金融风控策略概述
银行金融风控部门对客户申请一般用风控策略或模型。绝大多数金融公司没有累积大规模用户数据和逾期数据,难以构建模型。因此风控策略是金融公司运用最多工具,也称为专家规则。例如张三向银行申请贷款,张三60岁,年收入10万,性别男。银行风控贷前审批策略(简化版)为用户年龄小于50岁,年收入大于15万则通过审批。张三年龄不符合银行策略,因此被拒绝。王五30岁,年收入20万,性别男,符合银行准入策略,因此银行通过王五申请。这就是最简单的风控准入策略。实际中大型金融公司风控策略是一个复杂矩阵,这里做了简化只是帮助初学者理解。
之前很多助贷公司和我们公司联系,绝大多数助贷公司用的就是风控策略,即多年积累专家经验,比如户年龄小于XX岁,年收入大于XX万,是否有住房公积金等等。如果用户符合策略条件,则放款,反之拒绝。
助贷公司接触客户变量很少,绝大多数为用户自己填的一些变量,而且可信度差。但大型金融机构和银行拥有客户变量较多,传统的专家人工经验策略难以应付大数据。
重庆未来之智公司通过读取用户数据后,可以实现风控策略自动化生成和可视化展示,如下图是对数万条企业贷款违约样本数据集生成的策略图,其基本构架类似决策树。
风控策略解读
图中展示的是一个简单的决策树策略,用于根据身高和体重来判断性别。这个决策树通过一系列的条件判断来得出最终的结论。下面是对图中策略的逐步解读:
-
输入新样本信息:图中首先给出了一个新样本的信息,即身高163厘米,体重135斤。
-
第一步判断:决策树的第一个判断条件是身高是否小于或等于155厘米。
-
由于新样本的身高是163厘米,大于155厘米,所以沿着“否”的分支向下。
-
-
第二步判断:接下来,决策树判断体重是否小于或等于100斤。
-
新样本的体重是135斤,大于100斤,所以沿着“否”的分支向下。
-
-
第三步判断:然后,决策树判断身高是否小于或等于170厘米。
-
新样本的身高是163厘米,小于170厘米,所以沿着“是”的分支向下。
-
-
最终判断:经过上述三个条件的判断,最终得出结论,该样本是女性。
总结来说,这个决策树通过三个条件的判断(身高≤155cm、体重≤100斤、身高≤170cm),最终确定输入的用户信息(身高163cm,体重135斤)对应的是女性。这个决策树的逻辑是,如果一个人的身高超过155cm,体重超过100斤,但身高不超过170cm,那么这个人更可能是女性。
风控策略复杂度调整
重庆未来之智公司可以根据用户需求调整风控策略复杂度。下面第一张图是较为简单的风控策略图。第二张为较为复杂的策略图。
银行金融风控策略自动化生成和可视化脚本已经收藏于《python风控建模实战案例数据库》第67章,欢迎了解。
版权声明:文章来自公众号(python风控模型),未经许可,不得抄袭。遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。