机器学习树模型对比分析
一、算法概述
决策树
核心思想:基于树结构递归选择最优特征进行数据分割,形成分类/回归规则。
典型算法:ID3(信息增益)、C4.5(信息增益比)、CART(基尼指数/平方误差)。
随机森林(Random Forest)
核心思想:通过Bootstrap采样构建多棵决策树,结合Bagging和特征随机选择降低方差。
AdaBoost
核心思想:迭代调整样本权重,组合多个弱分类器(如决策树桩),侧重修正前序模型的错误。
XGBoost
核心思想:基于梯度提升框架,引入正则化、二阶导数优化和并行计算,支持自定义损失函数。
LightGBM
核心思想:采用直方图优化和Leaf-wise生长策略,显著提升训练效率,适合大规模数据6。
CatBoost
核心思想:自动处理类别特征,通过有序提升(Ordered Boosting)减少梯度偏差,增强鲁棒性。
NGBoost
核心思想:基于概率预测的自然梯度提升,输出预测分布而非单一点估计,适合不确定性量化。
二.优劣对比
三、关键技术差异
特征处理
XGBoost/LightGBM需手动编码类别特征,CatBoost自动处理
NGBoost通过概率分布建模直接处理连续变量不确定性
计算优化
LightGBM直方图算法减少特征分裂计算量(较XGBoost快10倍)
XGBoost支持近似贪心算法和稀疏感知分裂
正则化
XGBoost引入L1/L2正则项和树复杂度惩罚项
CatBoost通过有序提升减少过拟合
缺失值处理
XGBoost自动学习缺失值分裂方向
LightGBM默认将缺失值归入增益最大分支
四、选型建议
精度优先:XGBoost/CatBoost(结构化数据)
速度优先:LightGBM(百万级样本)
可解释性:决策树/随机森林(特征重要性可视化)
不确定性建模:NGBoost(需概率输出)
面试重点
目前金融公司对树模型的面试重点范围为决策树decisiontree,random forest,xgboost,lightgbm,给位学员可以重点关注这几个模型。
版权声明:文章来自公众号(python风控模型),未经许可,不得抄袭。遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。