一、引言
随着软件系统的复杂性不断提升,测试人员面临更高的质量保障压力和更复杂的场景覆盖需求。传统的测试方法在效率、响应速度和智能化水平上已经难以满足现代企业敏捷开发与持续交付(CI/CD)的要求。于是,越来越多的企业开始探索如何借助大语言模型(LLM),构建具备智能理解与任务协作能力的测试助手。
在这一背景下,FastChat 作为一款开源的、灵活可扩展的大语言模型对话框架,凭借其强大的并发处理能力、模型支持范围广、企业部署友好等特点,成为构建企业级测试助手的理想基础设施。
二、FastChat 简介:开源大模型服务的“快车道”
FastChat 是由 UC Berkeley 团队开发的高性能开源对话系统,支持多种主流大语言模型(如 LLaMA、ChatGLM、Baichuan、Qwen、Yi 等)的多用户并发推理部署。它提供以下关键能力,使其非常适合在企业中搭建测试助手:
-
多模型支持:兼容 HuggingFace 格式模型、ChatGLM、Qwen 等国产模型;
-
RESTful/OpenAI API 接口:兼容 OpenAI 接口,易于与现有系统集成;
-
多用户隔离与权限管理:便于企业内部多角色管理;
-
高性能并发推理能力:支持多卡部署、负载均衡;
-
支持 RAG 插件与自定义工具集成:适合构建面向测试知识库的问答能力。
三、企业级测试助手的架构设计
3.1 总体目标
打造一个具备以下能力的智能测试助手:
-
自动解析需求文档并生成测试用例;
-
根据代码或接口定义进行缺陷预测和边界分析;
-
支持自然语言提问测试策略、规范或缺陷处理流程;
-
提供接口测试辅助(如 Mock 数据生成、API调用建议);
-
集成企业私有知识库,实现 RAG(Retrieval-Augmented Generation)增强。
3.2 架构图
+--------------------+
| 用户前端(Web UI) |
+--------+-----------+
|
v
+--------+-----------+ +------------------------+
| FastChat API Server| <---> | 企业测试知识库(RAG) |
+--------+-----------+ +------------------------+
|
v
+--------+-----------+
| FastChat Controller|
+--------+-----------+
|
v
+--------+-----------+ +------------------------+
| FastChat Worker | <---> | Qwen / Baichuan / LLaMA|
+--------------------+ +------------------------+
四、搭建步骤详解
4.1 环境准备
-
服务器配置:建议部署在具备 ≥2 张 24G VRAM 显卡的服务器;
-
依赖安装:
git clone https://github.com/lm-sys/FastChat.git
cd FastChat
pip install -e .
4.2 启动 Controller 和 Worker
# 启动 controller
python3 -m fastchat.serve.controller &
# 启动 worker,加载企业自有模型(如 Qwen-7B)
python3 -m fastchat.serve.model_worker \
--model-path /models/Qwen/Qwen1.5-7B-Chat \
--device cuda \
--num-gpus 2 &
4.3 启动 OpenAI API Server
python3 -m fastchat.serve.openai_api_server \
--host 0.0.0.0 \
--port 8000 &
此时,FastChat 可通过 http://localhost:8000/v1/chat/completions
使用 OpenAI 格式 API 接入第三方应用。
五、测试助手核心能力构建方案
5.1 自动化测试用例生成
集成文档解析模块 + Prompt 工程,通过如下 RAG 模式实现:
-
使用 LangChain 加载测试规范文档、需求说明书等;
-
配置向量检索工具(如 FAISS);
-
构建提示模板(Prompt Template):
prompt = f""" 以下是产品功能需求: {retrieved_docs} 请基于上述内容,生成详尽的功能测试用例(包括前置条件、步骤、预期结果): """
5.2 接口测试辅助
将 FastChat 与 Postman / Swagger 文档解析模块连接:
-
自动识别 API 参数;
-
使用 LLM 自动生成边界测试值、异常输入组合;
-
输出可直接导入 Postman 的测试用例集合。
5.3 缺陷预测与静态分析建议
结合代码分析工具(如 SonarQube 或 LLM AST Parser),实现以下功能:
-
分析代码提交内容,预测潜在测试盲点;
-
提示可能遗漏的异常处理路径;
-
自动生成测试建议(类似 GitHub Copilot for QA)。
5.4 多角色交互支持
使用 FastChat 的多用户接口部署方案,对接企业身份认证系统(如 LDAP):
-
测试工程师可提问测试用例策略;
-
开发人员可请求缺陷验证建议;
-
管理者可获取自动化覆盖率报表。
六、RAG 测试知识库构建方案
为保证测试助手响应企业私有领域知识,可构建如下知识库:
6.1 数据准备
-
收集测试策略、测试标准文档、以往测试报告、Bug列表;
-
转换为 Markdown/Text 格式;
6.2 建立向量检索库
from langchain.vectorstores import FAISS
from langchain.embeddings import HuggingFaceEmbeddings
documents = load_documents("test_docs/")
faiss_index = FAISS.from_documents(documents, HuggingFaceEmbeddings())
6.3 配置 QA Chain
retriever = faiss_index.as_retriever()
qa_chain = RetrievalQA.from_chain_type(llm=ChatOpenAI(...), retriever=retriever)
FastChat 可通过内置插件机制调用该 Chain,实现知识增强问答。
七、企业落地建议与风险控制
7.1 部署建议
-
建议在内网私有云中部署,确保数据安全;
-
使用轻量 Qwen-1.5-7B、Baichuan2-7B、Yi-6B 等模型;
-
定期知识库更新,保持语义检索准确性。
7.2 安全与合规风险防控
-
配置接口调用权限,防止未授权访问;
-
针对模型生成内容设定审计机制;
-
对接测试平台时,引入“审阅后执行”机制。
八、未来展望:测试助手如何演化为测试代理(Agent)
FastChat 的多模型+插件扩展特性为其未来演进为“智能测试代理”奠定基础:
-
可与 CI/CD 系统结合,自主决策测试执行时机;
-
主动发现需求变更并提示回归测试任务;
-
对 Bug 修复建议进行验证并打标签;
-
形成“人+AI”协作的测试闭环。
九、结语
通过 FastChat 搭建企业级测试助手,不仅能够提升测试自动化程度,更能实现智能化、个性化、数据驱动的测试辅助决策。它不再是简单的问答机器人,而是具备知识理解能力、场景适配能力和企业集成能力的智能测试伙伴。对于希望迈向智能测试新时代的企业而言,FastChat 提供了一条低门槛、高灵活性、高扩展性的实践路径。