本地私有化部署大模型

一、魔塔社区平台

1.1 魔塔简介

  1. 阿里魔塔社区(ModelScope)是阿里巴巴推出的一个开放平台,专注于AI模型的共享与应用

  2. 核心功能

    模型下载:提供大量预训练模型,用户可直接下载使用。

    在线体验:部分模型支持在线测试,无需本地部署。

    模型训练与微调:支持用户基于现有模型进行二次训练。

    社区互动:用户可分享使用心得、提出问题或参与讨论。

  3. 访问地址:魔搭社区

1.2 下载模型

推荐使用命令行或者 ModelScope SDK 来进行模型的下载,模型一般都放在数据盘的模型目录下

以通义千问2.5-0.5B-Instruct模型为例

下载前安装modelscope

In [ ]:

#激活python虚拟环境
#conda activate /mnt/data/env/vllm
#安装modelscope命令
#!pip install modelscope

命令行方式:modelscope download --model Qwen/Qwen2.5-0.5B-Instruct --local_dir ./mnt/data/models/

In [ ]:

#SDK方式
#模型下载
#from modelscope import snapshot_download
#model_dir = snapshot_download('Qwen/Qwen2.5-0.5B-Instruct',cache_dir="/mnt/data/models/")

模型下载功能代码

In [ ]:

import time
import os
import sys

def download_model(model_name, save_path):
    # 记录开始时间
    start_time = time.time()
    print(f"开始下载: {model_name}")
    print(f"开始时间: {time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(start_time))}")

    try:
        # 使用 snapshot_download 下载模型
        from modelscope import snapshot_download
        model_dir = snapshot_download(model_name, cache_dir=save_path)
        print(f"模型已下载到: {model_dir}")

        # 记录结束时间
        end_time = time.time()
        print(f"下载完成: {model_name}")
        print(f"结束时间: {time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(end_time))}")

        # 计算下载用时
        download_time = end_time - start_time
        print(f"下载用时: {download_time:.2f} 秒")
    except Exception as e:
        print(f"下载失败: {e}")

def check_model_exists(model_name, save_path):
    """
    检查本地是否已经存在该模型。
    """
    model_dir = os.path.join(save_path, model_name)
    if os.path.exists(model_dir):
        print(f"模型 '{model_name}' 已存在于本地路径: {model_dir}")
        choice = input("是否继续下载并覆盖本地数据?(y/n): ").strip().lower()
        if choice != "y":
            print("下载已取消。")
            sys.exit(0)
        else:
            print("
### 如何在本地进行盘古大模型私有化部署 #### 准备工作 为了成功完成盘古大模型私有化部署,需准备必要的硬件资源以及软件环境。通常情况下,这涉及到配置高性能计算服务器集群,安装Linux操作系统,并设置网络连接以确保稳定的数据传输性能[^1]。 #### 部署流程概述 整个过程可以分为几个主要部分:获取镜像文件、初始化环境变量、启动容器服务并加载预训练权重参数。对于具体的实施细节,则依赖于官方提供的文档指南来进行操作。值得注意的是,在执行这些步骤之前应当仔细阅读相关说明材料,以便更好地理解和遵循最佳实践建议[^3]。 #### 获取授权许可 由于涉及版权保护和技术支持等问题,用户可能需要先申请相应的许可证才能合法地下载和使用特定版本的大规模预训练语言模型及其配套工具包。这一环节往往通过签署协议书或在线注册的方式实现,具体取决于供应商的要求[^2]。 #### 安装与配置 一旦获得了访问权限之后,就可以按照指示从指定位置下载所需的Docker镜像或其他形式打包好的运行时环境压缩包。解压后依照README.md中的指引逐步完成各项设定任务,比如定义存储路径、分配GPU资源份额等重要选项。此外,还需注意检查Python解释器版本号是否匹配预期目标,因为不同框架之间可能存在兼容性差异。 #### 测试验证 最后一步是要进行全面的功能测试来确认一切正常运作无误。可以通过编写简单的脚本来调用API接口发送请求给已部署的服务实例,观察返回的结果是否符合预期逻辑;也可以利用可视化界面监控实时日志输出情况,及时发现潜在错误信息加以修正优化。 ```bash # 启动 Docker 容器示例命令 docker run -it --gpus all \ -v /path/to/local/data:/data \ -p 8080:8080 \ pangualm/pangu:latest bash ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值