💡
1.XTuner简介
2.安装XTuner
3.快速上手微调大模型
XTuner 是由 上海人工智能实验室(OpenGVLab) 开发的一款专注于 大语言模型(LLM)微调 的高效工具库。它旨在简化大模型微调的流程,支持多种开源模型(如 LLaMA、ChatGLM、InternLM 等),并提供丰富的微调算法和优化技术,帮助用户快速适配下游任务。
XTuner 核心特点 广泛模型支持 兼容主流开源大模型,包括:
LLaMA/LLaMA-2
ChatGLM-2/3
InternLM/InternLM2
Qwen(通义千问)
Mistral 等。
高效微调算法
LoRA(低秩适配):轻量级微调,显著减少显存占用。
QLoRA(量化 LoRA):结合 4-bit 量化技术,进一步降低资源需求。
全参数微调:支持完整的模型参数训练(需更高资源)。
低资源需求
可在 消费级显卡(如 8GB 显存) 上运行,QLoRA 微调 LLaMA-7B 仅需约 10GB 显存。
支持多卡分布式训练,加速大规模模型微调。
开箱即用的配置
提供预定义的配置文件(YAML 格式),覆盖常见任务(如对话、文本生成)。
支持自定义数据集,适配领域特定需求(如医疗、法律)。 易用性
命令行工具一键启动训练/推理。
与 Hugging Face 生态无缝集成(支持加载 HF 数据集和模型)。
典型应用场景 领域知识注入:将专业领域数据(如医学、金融)微调至通用大模型。
对话机器人:定制个性化的对话风格或业务场景助手。
代码生成/补全:适配特定编程语言或代码库。
一、安装 XTuner
1.使用 conda 先构建一个 Python-3.10 的虚拟环境
conda create -n xtuner python=3.10 -y
2.从源码安装
git clone https://github.com/InternLM/xtuner.git
cd xtuner
pip install -e .
也可以通过镜像安装 pip install -e . -i Simple Index
备注: “-e” 表示在可编辑模式下安装项目,因此对代码所做的任何本地修改都会生效
3.验证
在命令行中使用 xtuner list-cfg 验证是否能打印配置文件列表。
xtuner list-cfg
==========================CONFIGS===========================
baichuan2_13b_base_full_custom_pretrain_e1
baichuan2_13b_base_qlora_alpaca_e3
bai