大模型微调系列(五)XTuner应用

💡

1.XTuner简介

2.安装XTuner

3.快速上手微调大模型

XTuner 是由 上海人工智能实验室(OpenGVLab) 开发的一款专注于 大语言模型(LLM)微调 的高效工具库。它旨在简化大模型微调的流程,支持多种开源模型(如 LLaMA、ChatGLM、InternLM 等),并提供丰富的微调算法和优化技术,帮助用户快速适配下游任务。

XTuner 核心特点 广泛模型支持 兼容主流开源大模型,包括:

LLaMA/LLaMA-2

ChatGLM-2/3

InternLM/InternLM2

Qwen(通义千问)

Mistral 等。

高效微调算法

LoRA(低秩适配):轻量级微调,显著减少显存占用。

QLoRA(量化 LoRA):结合 4-bit 量化技术,进一步降低资源需求。

全参数微调:支持完整的模型参数训练(需更高资源)。

低资源需求

可在 消费级显卡(如 8GB 显存) 上运行,QLoRA 微调 LLaMA-7B 仅需约 10GB 显存。

支持多卡分布式训练,加速大规模模型微调。

开箱即用的配置

提供预定义的配置文件(YAML 格式),覆盖常见任务(如对话、文本生成)。

支持自定义数据集,适配领域特定需求(如医疗、法律)。 易用性

命令行工具一键启动训练/推理。

与 Hugging Face 生态无缝集成(支持加载 HF 数据集和模型)。

典型应用场景 领域知识注入:将专业领域数据(如医学、金融)微调至通用大模型。

对话机器人:定制个性化的对话风格或业务场景助手。

代码生成/补全:适配特定编程语言或代码库。

一、安装 XTuner

1.使用 conda 先构建一个 Python-3.10 的虚拟环境
conda create -n xtuner python=3.10 -y

2.从源码安装
git clone https://github.com/InternLM/xtuner.git
cd xtuner
pip install -e .
也可以通过镜像安装 pip install -e . -i Simple Index
备注: “-e” 表示在可编辑模式下安装项目,因此对代码所做的任何本地修改都会生效

3.验证
在命令行中使用 xtuner list-cfg 验证是否能打印配置文件列表。
xtuner list-cfg

==========================CONFIGS===========================
baichuan2_13b_base_full_custom_pretrain_e1
baichuan2_13b_base_qlora_alpaca_e3
bai

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值