对于假设检验的个人理解

本文探讨了统计学中的错误类型,包括第一类错误与第二类错误。当可容忍的最小犯错误概率(α)大于实际的最小犯错误概率(P)时,可以接受犯第一类错误,拒绝原假设。P值大于0.05通常表示数据符合正态分布。在回归分析中,如果P值小于0.05,说明变量X对Y有显著影响。这些概念在假设检验和统计决策中至关重要。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1 P与α的关系

P是实际的最小犯错误概率,α是可容忍的最小犯错误概率(设定好的),若可容忍的最小犯错误概率比实际的大,故实际是可以犯错误的,犯第一类错误,拒绝原假设(若实际最小犯错误概率<可容忍最小犯错误概率,则可以犯错误,犯第一类错误,拒绝原假设),总之P<α拒绝原假设。
考虑单侧检验的P与α的关系

2 统计学上P值大于0.05数据符合正态分布

原假设为无差异,P>0.05表明与正态分布无差异,故符合正态分布。

3 回归分析中变量X对Y的影响程度

回归分析中,一般原假设为无影响,分别对整体和X显著性进行分析,若P<0.05,拒绝原假设,说明X对Y有显著性影响关系。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值