利用labelimg实现yolov8数据集的制作

    我们在使用yolov8进行物体检测识别的时候,由于其内置的n,s,m等模型只包含90多种物体(很多其他物品并未包含在其中),导致我们无法直接使用其模型进行视频或者图片的检测识别。这个时候,我们就需要自己制作数据集进行训练。下面我们通过使用lableimg进行图片的标注,完成识别物品图片数据集的采集。

一,部署虚拟环境

    我们打开anaconda Prompt,然后输入命令开始创建labelimg虚拟环境:

二、activate并安装

三、进行图片标注

3.1,采集图片

    自己可以去互联网上下载需要识别的物品图片,我本地下载的为酒精测试仪(市面上的一类)图片:

3.2,打开labelimg,进行配置

    在上述anaconda prompt命令行中,进入到自己本地采集图片目录层级(我本地为E:\code\python\labeldata),执行命令:

    执行后,我们进入到labelimg界面:

    1,我们点击Open Dir,选择我们采集图片的目录 (我本地为E:\code\python\labeldata\JPEG)

    2,我们点击Change Save Dir,设置我们标注后图片VOC文件存储目录

    3,我们选择我们保存的格式:我们选择PascalVOC

3.3,进行图片标注

    我们Open Dir选择我们的采集图片目录后,labelimg右侧会显示我们所有的图片:

    我们通过快捷键操作,进行图片标注:

    a:切换到上一张图片

    d:切换到下一张图片

    w:调出标注十字架

    del :删除标注框

    我们标注图片,然后按快捷键d,进行下一张图片标注,一张一张进行,完成所有标注:

    最后我们保存,退出即可。

### YOLOv8 标注工具概述 YOLOv8 可以显著提升标注工作的效率,通过其强大的对象检测能力来辅助人工标注过程[^1]。这种自动化程度不仅提高了工作效率,还减少了人为错误的可能性。 #### 推荐的标注工具组合 为了实现高效的标注流程,建议采用以下几种工具和技术相结合的方式: - **LabelImg**:这是一个广泛使用的图像标注工具,支持多种格式的数据集创建,并能很好地与YOLO系列模型兼容。虽然最初设计是为了配合YOLOv5使用,但对于YOLOv8同样适用[^2]。 - **Roboflow**:提供了一个完整的数据准备平台,允许用户上传原始图片,在线完成标注并导出适合YOLOv8训练的数据集。该平台上还有丰富的预处理选项以及增强功能,有助于提高最终模型性能。 - **SuperAnnotate**:另一款专业的计算机视觉项目管理软件,内置了先进的自动分割算法和支持团队协作的功能。对于大规模项目的管理和高质量标签生成特别有用。 #### 实际操作指南 以下是利用上述提到的一些工具来进行YOLOv8辅助标注的具体方法之一——基于Roboflow的工作流说明: 1. 注册登录 Roboflow 官网后新建一个项目; 2. 将待标注的照片文件夹拖拽至网页界面上载入系统; 3. 利用界面中的画框工具手动勾勒感兴趣区域(ROI),也可以先尝试一键智能识别物体轮廓再做微调; 4. 对于已经标记好的样本,点击右上角按钮启动批量编辑模式快速调整类别名称或其他属性设置; 5. 当所有必要的修改完成后,选择`Export`菜单项下的`YOLO v8 PyTorch`格式下载整理完毕后的数据包以便后续建模阶段直接读取使用。 ```bash # 下载并解压从Roboflow获得的数据集到指定目录下 unzip dataset.zip -d ./datasets/ ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

TPCloud

你的鼓励将是我创作的最大动力!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值