牛客 BM75 编辑距离(一) 【动态规划】

该文章描述了一个计算将字符串str1转换为str2所需的最少操作数的问题,包括插入、删除和修改字符三种操作。通过动态规划的方法,初始化dpMap矩阵并进行状态转移,最后返回dpMap[length2-1][length1-1]作为结果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

描述

给定两个字符串 str1 和 str2 ,请你算出将 str1 转为 str2 的最少操作数。

你可以对字符串进行3种操作:

1.插入一个字符

2.删除一个字符

3.修改一个字符。

字符串长度满足 1≤n≤1000  ,保证字符串中只出现小写英文字母。

示例1

输入:

"nowcoder","new"

返回值:

6

说明:

"nowcoder"=>"newcoder"('o'替换为'e'),修改操作1

"nowcoder"=>"new"(删除"coder"),删除操作5     

示例2

输入:

"intention","execution"

返回值:

5

说明:

一种方案为:

因为2个长度都是9,后面的4个后缀的长度都为"tion",于是从"inten""execu"逐个修改即可 

示例3

输入:

"now","nowcoder"

返回值:

5

 判断每个字符移动到对应的位置需要多少次,以此进行状态转移,最终结果就是 str1 的最后一个字符移动到 str2 的最后一个字符,需要移动的次数。

1、创建 dpMap,初始化第一行、第一列,其中 dpMap[0][0] = char1 == char2 ? 0 : 1,其余递增1

2、如果 char1 == char2,dp[yPos][xPos] = dp[yPos-1][xPos-1],如果不相同,那么dpMap 可以从 xPos-1 和 yPos-1 继承状态;因为存在 char1[xPos-1] == char2[yPos-1] 的情况,这时当前 char1 需要移动的次数减少一次,所以

dpMap[yPos][xPos] = Min(dpMap[yPos-1][xPos-1], Min(dpMap[yPos-1][xPos], dpMap[yPos][xPos-1])) + 1;

3、返回 dpMap[length2-1][length1-1]

    public int editDistance (String str1, String str2) {
        // write code here
        int length1 = str1.length();
        int length2 = str2.length();
        int[][] dpMap = new int[length2][length1];
        int xPos;
        int yPos;
        if (str1.charAt(0) == str2.charAt(0)) {
            dpMap[0][0] = 0;
        } else {
            dpMap[0][0] = 1;
        }
        for (xPos = 1; xPos < length1; xPos++) {
            dpMap[0][xPos] = dpMap[0][xPos-1] + 1;
        }
        for (yPos = 1; yPos < length2; yPos++) {
            dpMap[yPos][0] = dpMap[yPos-1][0] + 1;
            for (xPos = 1; xPos < length1; xPos++) {
                if (str1.charAt(xPos) == str2.charAt(yPos)) {
                    dpMap[yPos][xPos] = dpMap[yPos-1][xPos-1];
                } else {
                    dpMap[yPos][xPos] = Math.min(dpMap[yPos - 1][xPos], Math.min(dpMap[yPos][xPos - 1], dpMap[yPos - 1][xPos - 1])) + 1;
                }
            }
        }
        return dpMap[length2-1][length1-1];
    }

### BM2 的 C++ 实现 BM2 是道经典的算法题目,主要涉及二叉树的最大路径和问题。以下是基于已知信息以及常见解决思路给出的 C++ 实现。 #### 方法概述 该问题可以通过 **动态规划** 和 **递归回溯** 来求解。核心思想是从根节点出发,计算经过任意节点的最大路径和。对于每个节点,其贡献可以分为两种情况: 1. 节点作为路径的部分(单边向下延伸)。 2. 节点成为路径的转折点(左子树 + 右子树 + 当前节点值)。 最终通过递归的方式自底向上更新全局最大值。 --- #### C++ 实现代码 ```cpp /** * Definition for a binary tree node. */ struct TreeNode { int val; TreeNode* left; TreeNode* right; TreeNode(int x) : val(x), left(nullptr), right(nullptr) {} }; class Solution { public: int maxPathSum(TreeNode* root) { if (!root) return INT_MIN; // 边界条件处理 int globalMax = INT_MIN; helper(root, globalMax); return globalMax; } private: int helper(TreeNode* node, int& globalMax) { if (!node) return 0; // 左右子树的最大贡献值,忽略负数部分 int leftGain = std::max(helper(node->left, globalMax), 0); int rightGain = std::max(helper(node->right, globalMax), 0); // 更新当前节点为路径转折点时的最大值 int currentMax = node->val + leftGain + rightGain; globalMax = std::max(globalMax, currentMax); // 返回以当前节点为起点的侧最大路径和 return node->val + std::max(leftGain, rightGain); } }; ``` --- #### 关键点解析 1. **递归函数设计** - `helper` 函数用于计算以某个节点为根的最大路径和,并将其结果存储到 `globalMax` 中。 - 对于每个节点,分别考虑左侧和右侧子树的最大贡献值[^3]。 2. **边界条件** - 如果当前节点为空,则返回 0 表示无贡献。 - 使用 `INT_MIN` 初始化全局变量 `globalMax`,确保能够正确记录最小可能值。 3. **优化细节** - 避免重复计算子树的最大路径和,利用递归特性次完成所有节点的访问。 --- #### 时间与空间复杂度分析 - **时间复杂度**: O(n),其中 n 是二叉树中节点的数量。每个节点仅被访问次。 - **空间复杂度**: O(h),h 是二叉树的高度。最坏情况下(退化成链表),空间复杂度为 O(n)[^3]。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值