所谓范数及其在机器学习中的作用

本文参考:

1、https://www.jianshu.com/p/4bad38fe07e6

2、https://zhuanlan.zhihu.com/p/26884695

3、深度学习入门:基于Python的理论与实现 斋藤康毅(作者)

 

理解范数 - l_p

    在很多机器学习相关书籍中我们经常看到各种各样的距离及范数,如

\left \| x \right \|\left \| X \right \|

    其中,xX分别表示向量和矩阵。

    也有其他的欧氏距离、均方差之类,例如,向量x = [3,-2,1]^T的欧式范数 (Euclidean norm)为

\left \| x \right \|_2 = \sqrt{3^2+(2)^2+1^2} = 3.742

    用于表示向量的大小,这个也被叫l_2 -范数。

    为方便统一,一般将任意向量xl_p -范数定义为

\left \| x \right \|_p = \sqrt[p]{\sum_i\left | x_i \right |^p}

    主要有三类:l_0l_1l_2

l_0 范数的定义:

    根据l_p -范数的定义,当p=0时,我们就有了l_0 -范数

\left \| x \right \|_0 = \sqrt[0]{\sum_i\left | x_i \right |^0}

    表示向量x中非0元素的个数(0的0次方是0,非零的0次方是1,所以所有的零元素全都没了,只剩下非零元素变成的1了)

    大佬是这么说的:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值