本文参考:
1、https://www.jianshu.com/p/4bad38fe07e6
2、https://zhuanlan.zhihu.com/p/26884695
3、深度学习入门:基于Python的理论与实现 斋藤康毅(作者)
理解范数 - :
在很多机器学习相关书籍中我们经常看到各种各样的距离及范数,如
、
其中,,
分别表示向量和矩阵。
也有其他的欧氏距离、均方差之类,例如,向量的欧式范数 (Euclidean norm)为
用于表示向量的大小,这个也被叫 -范数。
为方便统一,一般将任意向量的
-范数定义为
主要有三类:、
、
范数的定义:
根据 -范数的定义,当p=0时,我们就有了
-范数
表示向量x中非0元素的个数(0的0次方是0,非零的0次方是1,所以所有的零元素全都没了,只剩下非零元素变成的1了)
大佬是这么说的: