vLLM大模型
vLLM(Vectorized Large Language Model Serving System)是由加州大学伯克利分校计算机系统研究团队开发的下一代大语言模型推理服务系统。作为专为现代化AI部署设计的开源框架,该系统通过突破性的内存架构创新和计算流程优化,成功实现了大模型服务在吞吐量、响应速度和资源利用率三个维度的协同提升,现已成为工业界优化LLM推理成本的关键技术方案。
核心技术优势
分布式推理架构
采用动态请求调度和零拷贝并行技术,支持跨多GPU/TPU设备的细粒度负载均衡。通过流水线并行与张量并行的混合策略,可线性扩展至数百张加速卡,实现每秒数万token的集群处理能力。
显存革命性优化
首创PagedAttention内存管理机制,将操作系统的虚拟内存分页理念引入注意力计算领域。该技术通过分块管理注意力键值张量(KV Cache),使显存碎片率降低83%,单卡可承载的并发请求量提升24倍,显著降低大模型服务门槛。
全场景覆盖能力
• 在线服务:支持动态批处理(Dynamic Batching)和连续批处理(Continuous Batching),在100ms级延迟约束下实现90%+的硬件利用率
• 边缘计算:通过量化感知服务(Quantization-Aware Serving)和自适应模型切分,可在消费级显卡部署百亿参数模型
• 模型微调:提供与训练框架无缝衔接的LoRA适配模块,支持实时热更新模型参数
该框架已成功应用于ChatGPT、Claude等知名AI产品的推理优化,在同等硬件条件下相比传统方案可实现5-10倍吞吐量提升。其创新的内存管理思想更被纳入PyTorch 2.3核心特性,持续推动大模型服务技术的演进。
vLLM vs Ollama:对比分析
在LLM推理引擎的选择上,vLLM和Ollama是两个常见的选项。对比如下:
对比维度 | Ollama | vLLM | 备注 |
---|---|---|---|
量化与压缩策略 | 默认采用4-bit/8-bit量化,显存占用降至25%-50% |
默认使用FP16/BF16精度,保留完整参数精度 |
Ollama 牺牲精度换显存,vLLM 牺牲显存换计算效率 |
优化目标 | 轻量化和本地部署,动态加载模型分块,按需使用显存 |
高吞吐量、低延迟,预加载完整模型到显存,支持高并发 |
Ollama 适合单任务,vLLM 适合批量推理 |
显存管理机制 | 分块加载 + 动态缓存,仅保留必要参数和激活值 |
PagedAttention + 全量预加载,保留完整参数和中间激活值 |
vLLM 显存占用为 Ollama 的 2-5 倍 |
硬件适配 | 针对消费级GPU(如RTX 3060)优化,显存需求低 |
依赖专业级GPU(如A100/H100),需多卡并行或分布式部署 |
Ollama 可在 24GB 显存运行 32B 模型,vLLM 需至少 64GB |
性能与资源平衡 | 显存占用低,但推理速度较慢(适合轻量级应用) |
显 |