Memcached缓存服务器

本文介绍了Memcached这一高性能缓存系统的特性及安装方法,并详细解释了启动参数的意义,还提供了测试启动状态的方法以及如何安装PHP扩展来使用Memcached。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Memecached是一个免费开源的、高性能的、具有分布式内存对象的缓存系统,它通过减轻数据库负载加速动态web应用。
Memcached的特征:
1、协议简单
2、基于libevent的事件处理
3、内置的内存管理系统
4、互不通信的Memcached之间具有分布特征

安装Memcached

以centos为例:yum install memcached

启动Memcached

memcached -m 32m -p 11211 -d -u root -P /avr/run/memcached.pid -c 256 -vv
启动过程中所用的选项说明:
-p 使用的TCP端口
-m 最大内存大小
-vv 以very vrebose模式启动,将调试信息和错误输出到控制台。
-d 作为守护进程在后台运行
-c 最大运行并发连接数
-P 设置保存Memcached的pid文件
-l 监听的服务器IP地址,如果有多个地址
-u 运行Memcached的用户,默认不能有root用户启动,所以当用户为root时,需要利用-u参数来指定。

测试启动是否正常
[root@iZ284knd7ljZ /]# telnet localhost 11211
Trying 127.0.0.1...
Connected to localhost.
Escape character is '^]'.
set test 'hello' 0 10
CLIENT_ERROR bad command line format
set test 0 0 10
test_value
STORED
get test
VALUE test 0 10
test_value
END
quit
Connection closed by foreign host.
关闭mecached

kill ‘cat /var/run/mecached.pid’

安装mecached的PHP扩展

已centos系统为例
yum install php-pecl-memcache
配置php.ini文件
如果php.ini中没有extension=memcache.so扩展,添加该扩展。

测试memcache的扩展是否安装成功
<?php
/*Memcached 缓存服务器  */
$mem = New Memcache;
$mem->connect('127.0.0.1', 11211);
$mem->set('test', 'Hello world!', 0, 12);
$val = $mem->get('test');
echo $val;
?>

如果在浏览器输出Hello world则安装成功。

### 使用Transformer模型进行图像分类的方法 #### 方法概述 为了使Transformer能够应用于图像分类任务,一种有效的方式是将图像分割成固定大小的小块(patches),这些小块被线性映射为向量,并加上位置编码以保留空间信息[^2]。 #### 数据预处理 在准备输入数据的过程中,原始图片会被切分成多个不重叠的patch。假设一张尺寸为\(H \times W\)的RGB图像是要处理的对象,则可以按照设定好的宽度和高度参数来划分该图像。例如,对于分辨率为\(224\times 224\)像素的图像,如果选择每边切成16个部分的话,那么最终会得到\((224/16)^2=196\)个小方格作为单独的特征表示单元。之后,每一个这样的补丁都会通过一个简单的全连接层转换成为维度固定的嵌入向量。 ```python import torch from torchvision import transforms def preprocess_image(image_path, patch_size=16): transform = transforms.Compose([ transforms.Resize(256), transforms.CenterCrop(224), # 假设目标分辨率是224x224 transforms.ToTensor(), ]) image = Image.open(image_path).convert('RGB') tensor = transform(image) patches = [] for i in range(tensor.shape[-2] // patch_size): # 高度方向上的循环 row_patches = [] for j in range(tensor.shape[-1] // patch_size): # 宽度方向上的循环 patch = tensor[:, :, i*patch_size:(i+1)*patch_size, j*patch_size:(j+1)*patch_size].flatten() row_patches.append(patch) patches.extend(row_patches) return torch.stack(patches) ``` #### 构建Transformer架构 构建Vision Transformer (ViT),通常包括以下几个组成部分: - **Patch Embedding Layer**: 将每个图像块转化为低维向量; - **Positional Encoding Layer**: 添加绝对或相对位置信息给上述获得的向量序列; - **Multiple Layers of Self-Attention and Feed Forward Networks**: 多层自注意机制与前馈神经网络交替堆叠而成的核心模块; 最后,在顶层附加一个全局平均池化层(Global Average Pooling)以及一个多类别Softmax回归器用于预测类标签。 ```python class VisionTransformer(nn.Module): def __init__(self, num_classes=1000, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4., qkv_bias=False, drop_rate=0.): super().__init__() self.patch_embed = PatchEmbed(embed_dim=embed_dim) self.pos_embed = nn.Parameter(torch.zeros(1, self.patch_embed.num_patches + 1, embed_dim)) self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim)) dpr = [drop_rate for _ in range(depth)] self.blocks = nn.Sequential(*[ Block( dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, drop=dpr[i], ) for i in range(depth)]) self.norm = nn.LayerNorm(embed_dim) self.head = nn.Linear(embed_dim, num_classes) def forward(self, x): B = x.shape[0] cls_tokens = self.cls_token.expand(B, -1, -1) x = self.patch_embed(x) x = torch.cat((cls_tokens, x), dim=1) x += self.pos_embed x = self.blocks(x) x = self.norm(x) return self.head(x[:, 0]) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值