【信号处理】最大似然估计量与最大似然估计值

前言:我是一名电子信息研0学生,未来研究方向是通感一体化,在学习克拉美-罗下界CRLB时,学习顺序是回顾了无偏估计与最大似然估计,然后再学习CRLB,最后结合论文去理解复数域的CRLB。上篇主要介绍了无偏估计,这篇主要介绍对最大似然估计的学习。

【信号处理】无偏估计-CSDN博客

最大似然估计学习

参数估计(二).最大似然估计 - 知乎

我主要是学习了这篇知乎,里面对似然估计的讲解非常浅显易懂,有对概率函数与似然函数的对比讲解,还有相关例子辅助理解,我也对其中的相关内容进行了推导和整理,笔记如下:
在这里插入图片描述
而针对文中它的小写表示和大写表示产生了疑惑,因此整理对最大似然估计量最大似然估计值的相关学习笔记,其实本质就是概率论里的估计值和估计量相关内容。

最大似然估计量与最大似然估计值

核心定义

  • 最大似然估计量 (Maximum Likelihood Estimator - p ^ \hat{p} p^):

    • 这是题目中最后一步给出的 p ^ = X ˉ = 1 n ∑ i = 1 n X i \hat{p} = \bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i p^=Xˉ=n1i=1nXi
    • 它是什么? 它是一个数学表达式,一个样本的函数。它将样本的取值 ( X 1 , X 2 , . . . , X n ) (X_1, X_2, ..., X_n) (X1,X2,...,Xn) 映射到一个估计值。
    • 关键特性:
      • 公式/规则: 它代表了推导出的求解参数 p p p通用规则或公式
      • 随机性: 因为样本 X 1 , X 2 , . . . , X n X_1, X_2, ..., X_n X1,X2,...,Xn 本身是随机变量,所以这个估计量 p ^ = X ˉ \hat{p} = \bar{X} p^=Xˉ 也是一个随机变量
  • 最大似然估计值 (Maximum Likelihood Estimate - p ^ \hat{p} p^):

    • 这是题目中最后一步给出的 p ^ = x ˉ = 1 n ∑ i = 1 n x i \hat{p} = \bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i p^=xˉ=n1i=1nxi
    • 它是什么? 它是将具体观测数据 ( x 1 , x 2 , . . . , x n ) (x_1, x_2, ..., x_n) (x1,x2,...,xn) 代入估计量公式后得到的具体数值
    • 关键特性:
      • 具体数值: 它是一个确定的、非随机的数字
      • 数据依赖性:完全依赖于实际观察到的数据 ( x 1 , . . . , x n ) (x_1, ..., x_n) (x1,...,xn)

区别

特征最大似然估计量 ( p ^ = X ˉ \hat{p} = \bar{X} p^=Xˉ)最大似然估计值 ( p ^ = x ˉ \hat{p} = \bar{x} p^=xˉ)
本质统计量 - 样本 X i X_i Xi 的函数数值 - 具体计算结果
随机性随机变量常数
表示符号大写字母 ( X X X) - p ^ = 1 n ∑ X i \hat{p} = \frac{1}{n} \sum X_i p^=n1Xi小写字母 ( x x x) - p ^ = 1 n ∑ x i \hat{p} = \frac{1}{n} \sum x_i p^=n1xi
描述对象估计的规则估计的结果

联系

  1. 估计值是估计量的具体实现:
    估计值 = 估计量 ( x 1 , . . . , x n ) \text{估计值} = \text{估计量}(x_1, ..., x_n) 估计值=估计量(x1,...,xn)
  2. 共同的数学形式:
    p ^ = 1 n ∑ X i vs p ^ = 1 n ∑ x i \hat{p} = \frac{1}{n}\sum X_i \quad \text{vs} \quad \hat{p} = \frac{1}{n}\sum x_i p^=n1Xivsp^=n1xi

相关意义

  1. 理论推导: 通过最大化似然函数得到估计量公式:
    p ^ = X ˉ \hat{p} = \bar{X} p^=Xˉ
  2. 实际应用: 将具体数据代入得到估计值:
    p ^ = x ˉ \hat{p} = \bar{x} p^=xˉ
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值