
自动曝光矫正
文章平均质量分 63
tony365
树大招风
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
图像融合:可见光和红外图像Visible and NIR image fusion using weight-map-guided Laplacian–Gaussian pyramid f
首先weight map的计算和 mertens有所不同。mertens方法中,主要使用了亮度,对比度,饱和度三个概念。local contrast的实现效率比较低,先stack在一起多层。借鉴了 mertens的方法,进行rgb和nir图像的融合。然后 V 与 NIR图像计算weight map。然后 高斯-拉普拉斯金字塔融合,得到新的V。rgb转换到 HSV,对比度增强,就是锐化。原创 2024-06-11 16:21:29 · 373 阅读 · 0 评论 -
多曝光融合算法(八):MEFLUT: Unsupervised 1D Lookup Tables for Multi-exposure Image Fusion
是不是满足这个条件可以看下通过设置 图像输入,相同灰度的像素 输出的 weightmap是不是也是相同的。查找表没有利用语义信息,可能不够平滑,即使假如guide filter,guide filter的参数也不能自适应调整。输入一个图像 全为0, 得到K个weight map,求这k个weight map的mean, 作为。还有一个最终要的问题就是。这样的假设相当于认为, 网络学到的映射关系是 只与 单个像素值有关系。效果不如本文提出的网络,说明本文提出的网络转换为1Dlut 更加有效。原创 2024-06-06 14:23:41 · 1173 阅读 · 0 评论 -
Globally Optimized Linear Windowed Tone-Mapping, aec
tone mapping原创 2023-04-19 16:52:39 · 255 阅读 · 0 评论 -
Learning Tone Curves for Local Image Enhancement
作者 LUXI ZHAO , ABDELRAHMAN ABDELHAMED , AND MICHAEL S. BROWN。然后每个patch的中心直接用1D lut, 其他部分像素用周边lut插值得到,避免引入aritfact.个patch, 卷积网络为RGB三个通道预测。损失函数是 L2 + 浅层vgg特征损失。就是每个patch 3个1D lut.个 look up table,原创 2023-04-18 09:33:39 · 511 阅读 · 0 评论 -
Automatic Exposure Correction of Consumer Photographs 自动曝光矫正论文
更多分析和代码,查看。原创 2022-01-07 20:08:38 · 550 阅读 · 0 评论 -
Automatic Exposure Correction of Consumer Photographs 分析
原图:图分割算法:分为129块, 129个颜色表示每一块129块分别用 灰度0,1,2,3… 128表示原理参考: code主函数如下可以得到上面的两张图。2. 按灰度区域合并区域分割后129个region, 然后将其归类为10个gray zone.灰度值范围[0, 1]zone 0: [0,0.1]zone 1: [0.1,0.2]zone 2: [0.2,0.3]zone 3: [0.3,0.4]zone 4: [0.4,0.5]zone 5: [0.5,0.6]zone 6原创 2022-12-22 17:04:41 · 703 阅读 · 0 评论