深入理解并发编程

并发编程


前言

并发编程是一种在计算机科学中用于提高程序性能和资源利用率的技术,它允许程序中的多个任务同时执行。这种技术在现代软件开发中变得越来越重要,尤其是在多核处理器和分布式系统中。
重点:编译器优化 -> CPU硬件行为 -> 内存排序 -> 原子性和同步机制

一、并发编程的初步探索

  • 并发与并行的区别
    并发(Concurrency)是指多个任务在宏观上同时进行,但不一定在同一时刻执行。例如,在操作系统中,多个进程可以并发运行,但它们可能交替使用CPU时间片。
    并行(Parallelism)是指多个任务在同一时刻或非常接近的时刻同时执行。这需通常要多核处理器或分布式计算环境的支持。

  • 并发编程模型
    共享内存模型 :多个线程共享同一块内存空间,通过锁等机制来实现同步和互斥。
    消息传递模型:线程之间通过消息传递进行通信,而不是共享内存。这种模型通常用于分布式系统。
    Actor模型:每个Actor都是一个独立的实体,拥有自己的状态和行为,通过消息传递进行交互。

  • 并发编程的挑战
    死锁:当两个或多个线程互相等待对方释放资源时,会导致死锁。检测和避免死锁是并发编程中的一个重要问题。
    竞态条件:当多个线程同时访问共享资源且没有适当的同步机制时,可能会导致不可预测的行为。
    原子性问题:确保操作在多线程环境中是原子性的,即要么完全执行,要么完全不执行。

  • 并发编程语言和工具
    Java:Java提供了多线程支持,通过 Thread类和 Runnable接口来实现并发。Java还提供了 synchronized关键字和 java.util.concurrent包中的工具类来处理同步和线程安全问题。
    Go语言:Go语言通过grooutines和channels简化了并发编程,使得开发者能够更容易地编写高效的并发程序。
    π演算:一种用于描述并发计算的数学理论,可以帮助设计和验证并发系统。

  • 并发编程的应用场景
    Web应用:高并发的Web应用需要良好的可伸缩性和负载均衡能力,以应对大量用户请求。
    分布式系统:在分布式系统中,每个节点可以独立执行任务,并通过网络进行通信和协调。
    实时系统:实时系统需要确保在特定时间内完成任务,因此需要精确的调度和同步机制。

  • 并发编程的未来趋势
    随着云计算和大数据的发展,对高并发处理的需求不断增加。未来的并发编程将更加注重性能优化、错误检测和容错能力。
    新的编程模型和语言正在被开发,以简化并发编程的复杂性并提高开发效率。

   并发编程是一个复杂但至关重要的领域,它不仅提高了程序的性能,还为解决大规模计算问题提供了可能。理解和掌握并发编程对于现代软件开发者来说是必不可少的技能。

二、key point

1、为什么编译器和 CPU 硬件对 loads 和 store 进行重新排序?

编译器和CPU硬件对loads和stores进行重新排序的原因主要与性能优化有关。在现代处理器中,为了提高执行效率,编译器和处理器通常会通过重新排序内存访问操作来实现这一点。

  1. 性能优化:现代处理器为了提高性能,常常采用乱序执行(out-of-order execution)技术。这种技术允许处理器在不违反数据依赖关系的前提下,重新安排指令的执行顺序,从而最大化处理器的吞吐量和带宽。例如,在执行多个内存操作时,处理器可能会将它们重新排序,以减少等待时间和提高并行性。
  2. 缓存一致性:在多核处理器中,为了保持缓存一致性,处理器通常会使用store缓冲区来保存尚未完成的存储操作。这样可以避免在存储操作完成之前阻塞其他操作,从而提高整体性能。同时,通过这种方式,处理器可以在不违反程序顺序的情况下,将loads和stores重新排序。
  3. 指令重排的限制:尽管处理器可以对loads和stores进行重排,但某些情况下仍然需要保持特定的顺序。例如,在涉及锁定指令(如XCHG)的情况下,处理器必须保证特定的顺序,以确保数据的一致性和同步性。此外,Intel架构中的StoreLoad重排序仅允许loads与不同位置的stores重排,而不能与同一位置的stores重排。
  4. 编译器优化:编译器在生成代码时也会进行指令重排,以优化程序的执行效率。例如,如果一个变量在多次读取之间没有被写入,则编译器可能会决定省略这些重复的读取操作。这种优化有助于减少不必要的计算和内存访问,从而提高程序性能。
  5. 多处理器系统中的挑战:在多处理器系统中,内存操作的顺序问题尤为复杂。为了确保数据的一致性和同步性,需要使用内存屏障指令来强制执行特定的顺序要求。这些屏障确保了在执行特定指令时,所有相关操作必须按顺序完成,以避免数据竞争和错误。
       编译器和CPU硬件对loads和stores进行重新排序是为了提高性能和效率,但同时也需要通过内存屏障等机制来保证数据的一致性和同步性。这种重排序策略在现代高性能处理器设计中是常见的,并且对于多核和多处理器系统尤为重要。

在并发编程中,loads(加载)和stores(存储)操作是基本的内存访问操作,用于在寄存器和内存之间传输数据。具体来说:

  • Load 操作:从内存中读取数据并将其加载到寄存器中。例如,在MIPS架构中,lw t 3 , 4 ( t3, 4( t3,4(t2)指令将数据从内存位置 t 2 + 4 加载到寄存器 t2 + 4加载到寄存器 t2+4加载到寄存器t3。在其他架构中,类似的指令也用于实现这一功能。
  • Store 操作:将寄存器中的数据存储到内存中。例如,在MIPS架构中,sw t 4 , 16 ( t4, 16( t4,16(t1)指令将数据从寄存器 t 4 存储到内存位置 t4存储到内存位置 t4存储到内存位置t1 + 16。同样地,其他架构也有类似的指令来实现这一功能。

2、为什么我们需要特殊的工具来防止这些重新排序在线程之间进行通信?

在多线程编程中,需要使用特殊工具来防止编译器和CPU硬件在线程间通信时的loads和stores重新排序,主要是因为这种重新排序可能导致数据不一致性和程序行为异常。具体来说:

  1. 编译器和硬件的重排序:编译器和CPU硬件为了提高性能,常常会对代码进行重排序。例如,编译器可能会将某些操作提前或推迟执行,以优化指令流水线的使用效率
    。然而,在多线程环境中,这种重排序可能会导致线程间的数据竞争和错误的结果。因此,需要使用内存屏障(barrier)等工具来强制执行特定的顺序。
  2. 内存模型的差异:不同的硬件架构对内存读写操作的重排序有不同的保证。例如,Intel x86架构通常不会对写入操作进行重排序,而其他架构可能允许这种重排序。这意味着在某些情况下,即使硬件提供了内存模型的保证,也必须通过额外的屏障指令来确保数据的正确顺序。
  3. 多处理器系统中的同步问题:在对称多处理(SMP)系统中,处理器之间的通信需要确保数据的正确顺序。例如,如果一个处理器的存储操作发生在另一个处理器的加载操作之前,这可能导致数据不一致。因此,需要使用特殊的指令或工具来确保这些操作按照预期的顺序执行。
  4. 原子操作和非顺序内存排序的影响:原子操作虽然可以防止某些优化,但也可能导致编译器对某些操作进行重排。为了避免这种情况,需要使用volatile等工具来确保线程之间的通信安全。
  5. 避免死锁和数据竞争:在多线程环境中,如果编译器或硬件对操作进行重排序,可能会导致死锁或数据竞争。例如,如果一个线程持有锁而另一个线程没有清除自己的计数器,这可能导致死锁。因此,使用内存屏障可以防止这种情况的发生。
       为了确保多线程程序的正确性和性能,需要使用特殊的工具和技术来防止编译器和CPU硬件在线程间通信时的loads和stores重新排序。这些工具包括内存屏障、原子操作以及特定的汇编指令等,它们能够帮助程序员控制内存操作的顺序,从而避免潜在的数据不一致性和程序错误。

3、我们如何保证我们计划的顺序一致性?

在多线程编程中保证内存操作的顺序一致性,需要遵循一系列规则和机制,以确保所有线程对共享内存的访问行为符合预期的顺序。以下是基于我搜索到的资料,总结出的实现顺序一致性的方法和机制:

方法/机制描述
程序顺序所有读写操作必须按照程序顺序完成。
写操作的原子性写操作必须是原子的,所有处理器以相同顺序看到这些写入。
内存请求的顺序性每个核心在发出所有先前内存请求完成后,再发出新的内存请求。
访问图通过访问图表示多线程执行时的内存访问序列,并定义happens-before关系。
屏障指令使用synclwsync屏障指令来强制执行更强的顺序性。
依赖关系通过依赖关系来保证内存访问的顺序性。
一致性协议确保内存一致性的方法被称为一致性协议。
缓存一致性确保缓存一致性,避免数据不一致。
禁止重新排序禁止处理器重新排序读写操作,确保程序的预期行为。
使用锁机制通过锁机制避免同时对共享变量进行冲突访问。

4、原子读取-修改-写入操作?

原子读取-修改-写入(Read-Modify-Write,简称RMW)操作在多线程编程中是一种重要的技术,用于确保在多线程环境中对共享数据的一致性和原子性。这种操作允许一个线程在不被其他线程干扰的情况下,对共享资源进行一次性的读取、修改和写入操作。
实现方式:

  1. 硬件支持:现代处理器架构提供了多种原子指令,如测试与设置(test&set)、比较与交换(compare&swap)等,这些指令可以确保在多处理器系统中实现原子性操作。例如,在x86架构中,compare&swap指令可以用来实现原子性的读-改-写操作。
  2. 软件实现:在某些情况下,如果硬件不直接支持原子操作,可以通过软件来模拟这些操作。例如,使用自旋锁(SpinLock)来实现多处理器队列锁,以解决多个线程等待同一资源时的同步问题。
  3. CUDA中的应用:在CUDA架构下,原子操作提供了保证原子性的手段,即操作不可中断,并且所有访问变量的操作都按照严格的顺序执行,从而允许大量线程同时更新同一个全局变量,并得到正确的结果。CUDA支持多种原子操作,例如atomicAdd(),可以确保在多个线程之间原子地执行操作,而无需担心数据竞争问题。
    影响
  4. 一致性问题:在多线程和并行计算环境中,读/写操作的一致性和原子性是一个复杂的问题。并发性、远程存储、性能优化以及单元大小与值大小不匹配等因素都可能影响读/写操作的原子性和一致性。
  5. 性能优化:原子操作可以避免使用锁机制带来的性能开销,例如上下文切换和优先级倒置等问题。这使得在多处理器系统中能够更高效地处理共享数据。
  6. 数据竞争:原子操作可以有效避免数据竞争,确保结果的一致性。例如,在CUDA架构下,通过使用原子操作来更新全局变量,可以避免大量线程写入内存导致结果丢失的问题。
  7. 同步机制:原子操作常用于实现自旋锁等同步原语,以确保在多线程环境下的正确同步。
    原子读取-修改-写入操作在多线程编程中通过提供一致性和原子性的保证,显著提高了多线程环境下的数据处理效率和可靠性。然而,其实现需要考虑硬件支持、软件模拟以及并发控制等多种因素。

CUDA(Compute Unified Device
Architecture)是由NVIDIA开发的一种并行计算平台和编程模型,旨在利用GPU进行通用处理(GPGPU),以提高计算密集型任务的执行效率。CUDA架构的核心在于其并行编程模型,它允许开发者通过行业标准的编程语言(如C、C++、Fortran等)来编写高效的并行代码。

5、如果在弱序硬件上实现有什么影响?

在弱序硬件上实现原子读取-修改-写入操作(RMW)的影响主要体现在以下几个方面:

  1. 性能影响:在弱序架构中,原子操作需要通过特殊的指令来确保操作的原子性和一致性。例如,x86架构中的原子RMW操作通常需要内存屏障来序列化操作,这会导致性能开销增加,尤其是在更深层次的管道中。然而,新的技术如“Free atomics”可以消除对内存屏障的需求,从而在保持原子性和一致性的同时提高性能。
  2. 同步机制:弱序硬件通常需要特殊的同步机制来确保原子操作的正确执行。例如,在ARMv6架构中,LDREX和STREX指令被用来支持对共享存储器的非阻塞同步,确保同一数据的“读取-修改-写入”操作在执行期间不会被打断。
  3. 内存模型的复杂性:在弱序内存模型中,原子操作的验证和实现变得更加复杂。例如,文章提到在弱内存模型中,原子读写操作只能在没有挂起读操作的情况下执行。这种复杂性要求开发者在设计并发程序时必须非常小心,以避免竞态条件和数据不一致的问题。
  4. 硬件支持:不同硬件架构对原子操作的支持程度不同。例如,某些架构可能需要特殊的指令来执行自修改代码,而Alpha CPU则需要为关联数据之间的读使用内存屏障。这意味着在不同平台上实现原子操作时需要考虑硬件的具体特性。
  5. 并发性能:在多核架构中,原子操作可能会影响系统的吞吐量。例如,在GPU上使用原子操作会导致线程排队等待访问内存位置,从而降低吞吐量。因此,在设计并行程序时,需要权衡原子操作带来的性能开销。
       弱序硬件上实现原子读取-修改-写入操作需要开发者仔细考虑硬件特性、同步机制以及内存模型的复杂性,以确保程序的正确性和高效性。

弱序硬件(WeakOrdering)是一种内存一致性模型,它允许在多处理器系统中进行更高效的并行计算。在弱序硬件中,内存操作分为数据操作和同步操作。数据操作可以以任意顺序执行,而同步操作则需要在所有前序操作完成后才能执行。这种模型通过减少对顺序一致性的要求,提高了处理器的执行效率,因为处理器可以在不等待所有数据操作完成的情况下继续执行其他任务。
弱序硬件通过减少对顺序一致性的要求,提高了处理器的执行效率和性能,但同时也增加了编程的复杂性和对硬件特性的依赖。因此,程序员在使用弱序硬件进行并行编程时,需要充分理解其特性和限制,以确保程序的正确性和高效性。

6、我们如何使用非顺序一致的内存排序仔细优化无锁代码?

在非顺序一致的内存排序环境下优化无锁代码是一个复杂的问题,需要仔细考虑内存排序模型、同步原语以及数据结构的设计。以下是一些基于我搜索到的资料的优化策略:

  1. 使用适当的内存顺序:
    • 在设计无锁数据结构时,可以先使用std::memory_order_seq_cst进行原型设计,因为这种内存排序方式易于理解且所有操作形成总序。然而,使用其他内存排序是一种优化,应避免过早尝试。
    • 不同的内存排序模型(如std::memory_order_relaxed、std::memory_order_acquire、std::memory_order_release等)可以减少同步开销,但需要仔细设计以避免数据竞争和不一致。
  2. 优化锁和同步机制:
    • 移除无用的同步机制,例如在垃圾回收器中移除不必要的锁。
    • 使用Futex替代手动调优的锁,以提高性能。
    • 优化锁的实现,例如通过减少锁的粒度或使用细粒度的锁定方案来保护有限数量的桶或单个桶。
  3. 无锁内存回收:
    • 使用无锁内存回收方案来解决锁自由代码中管理内存的难题。这包括等待所有线程访问数据结构且删除所有待删除对象、使用危险指针识别特定对象被访问的情况、以及通过引用计数确保对象在无所有者引用时被删除。
  4. 减少内存屏障的使用:
    • 手动平衡过多和过少的内存屏障既困难又耗时,且容易出错。因此,可以使用自动推理工具来帮助程序员正确且高效地放置内存屏障。
    • 在某些情况下,可以通过减少当前变量的更新频率来优化性能,从而减少内存屏障的使用。
  5. 使用无锁数据结构:
    • 设计无锁算法对于索引结构来说可能复杂,但可以避免瓶颈,实现现代CPU上的高效并发。
    • 例如,MemSQL使用无锁跳表,而Microsoft的Hekaton主内存OLTP引擎则使用无锁B+树。
  6. 优化哈希表:
    • 实施细粒度的锁定方案,保护有限数量的桶或甚至单个桶,以减少其他插入进程对表块的阻塞。
    • 使用乐观锁定和无锁查找操作来提高性能。
  7. 验证和测试:
    • 使用形式化验证方法来确保并发数据类型的正确性,特别是在使用松弛内存排序模型的情况下。
    • 通过程序转换方法来验证弱内存模型下的程序正确性。
  8. 利用硬件特性:
    • 利用原子CPU硬件原语如比较-交换(CAS)指令来原子地修改索引状态。
    • 使用写缓冲区、重叠写入、非阻塞读取和优化编译器等技术来提高性能,但需要小心处理指令重新排序的问题。
      通过结合这些策略,可以在非顺序一致的内存排序环境下有效地优化无锁代码,提高并发性能和正确性。

无锁代码是指在多线程环境中,无需显式地使用锁(如互斥锁)来保护共享资源的代码。这种技术利用原子操作(atomic operations)来实现线程安全的数据结构,从而避免了因锁竞争而产生的阻塞和等待时间。原子操作通常包括比较并交换(Compare-and-Swap,CAS)指令,这些操作可以在不阻塞其他线程的情况下完成内存更新。

7、错误共享如何影响并发内存访问的性能?

错误共享(False Sharing)在并发内存访问中对性能的影响主要体现在以下几个方面:

  1. 缓存一致性开销增加:在多核处理器系统中,每个核心都有本地缓存,这些缓存必须保持一致性。当多个核心访问同一缓存行的数据时,为了维护一致性,每次更新共享缓存行时,所有访问该缓存行的缓存都会强制更新。这种机制虽然保证了数据的一致性,但会带来显著的性能损失,因为需要进行额外的数据传输和缓存行失效操作。
  2. 性能下降:错误共享会导致不必要的数据传输和性能损失。例如,在多核系统中,如果多个核心同时访问和修改同一缓存行中的数据,会导致缓存行之间的争用,从而浪费大量时间在不必要的数据读取和写回上。此外,当一个处理器更新其部分时,它必须首先使其他处理器的缓存行无效化,这可能会导致其他缓存中的数据不干净,从而进一步降低性能。
  3. 负载不平衡:在并行计算中,错误共享还可能导致负载不平衡。尽管通过静态分区粒子可以减少barriers和coherence miss时间,但虚假共享仍然限制了整体速度提升。
  4. 解决方案:为了解决错误共享问题,可以采用多种方法。例如,在缓存行末尾填充数组以确保数组元素从缓存行边界开始,或者使用线程本地的数据副本。此外,编译器优化功能也可以用于消除虚假共享。在某些情况下,固定页面(pinning)技术也被提出以减少虚假共享开销,尽管这需要额外的资源和开销。
  5. 实际应用中的挑战:在实际应用中,错误共享是一个复杂的问题,尤其是在多核系统中。设计多核系统缓存时需要考虑如何减少虚假共享的影响,以提高性能。此外,错误共享不仅是一个性能问题,而且是一个设计挑战,需要在硬件和软件层面进行综合考虑。
       错误共享在并发内存访问中会导致显著的性能下降,特别是在多核处理器系统中。因此,在设计和优化并行程序时,需要特别注意避免错误共享带来的负面影响。

8、为什么 volatile 是线程间通信的不合适工具?

volatile关键字在多线程编程中并不是一个理想的工具,原因如下:

  1. 缺乏同步保证:volatile关键字主要用于防止编译器对变量的优化,以确保每次访问时都能从内存中读取最新的值。然而,它并不能提供必要的同步保证,例如原子性、可见性和顺序性。在多线程环境中,如果多个线程共享可变数据,而没有适当的同步机制,就无法保证一个线程所做的修改能够被其他线程看到,从而可能导致程序的活性失败和安全性失败。
  2. 不能保证数据一致性:尽管volatile可以确保对共享变量的修改对其他线程是可见的,但仅此不足以保证数据的一致性和正确性。在某些情况下,使用volatile可能会导致线程间的数据不一致,因为没有提供同步机制来确保其正确性。
  3. 性能问题:虽然volatile可以避免编译器优化带来的问题,但其读操作的性能消耗与普通变量几乎相同,而写操作可能会更慢,因为它需要插入内存屏障指令来保证处理器不发生乱序执行。这使得volatile在多处理器环境下不能确保多个线程看到同样顺序的数据变化。
  4. 替代方案的建议:为了实现数据的不可分性和同步,推荐使用互斥锁(mutex)、条件变量(condvar)或原子操作(atomic operations)。这些工具能够更好地控制共享数据的访问,并避免数据竞争。在并发编程中,应遵循ISO/IEC TR 24772-1和C++ Core guidelines,优先选择顺序一致的原子操作以避免潜在的协议锁错误。
  5. 误解和不当使用:一些开发者可能会误以为volatile变量在各个线程中是一致的,从而认为基于volatile变量的运算在并发下是线程安全的。然而,这种误解可能导致严重错误和难以调试的问题。
       因此,在多线程编程中,应谨慎使用volatile关键字,并优先考虑使用更合适的同步机制来确保数据的一致性和程序的正确性。

9、如何防止编译器以不需要的方式融合原子操作?

为了防止编译器以不需要的方式融合原子操作,可以采取以下几种方法:

  1. 使用内存屏障:在C++中,内存屏障(memory barriers)是确保原子操作正确执行的重要工具。例如,GCC提供了多种内存屏障原语,如__sync_synchronize()和barrier(),这些原语可以约束编译器和CPU的操作重排序,从而确保内存读取或写入操作不会被优化掉。此外,还可以使用__atomic_load_n、_atomic_store_n等内置函数来实现原子操作,并通过指定内存顺序参数来避免不可预测的行为。
  2. 避免编译器优化:在某些情况下,编译器可能会合并相邻的原子操作,导致未定义行为。因此,开发者需要谨慎地使用原子操作,并确保在关键代码段中不进行不必要的合并。例如,在编写代码时,可以明确地使用原子操作指令来防止编译器进行优化。
  3. 使用乐观同步:乐观同步是一种替代锁机制的方法,特别适用于并行化编译器中实现细粒度的原子操作。这种方法通过乐观地尝试更新内存位置,并在失败时重试计算,而不是阻塞等待锁的释放。乐观同步可以显著提高性能并减少内存开销。
  4. 显式声明原子性:在C语言中,可以使用volatile关键字来声明变量为原子变量,从而防止编译器对这些变量进行优化。然而,这种方法并不总是足够安全,因此在并发编程中,更推荐使用专门的原子操作函数。
  5. 硬件支持:现代处理器通常提供了高效的原子指令,如MIPS架构中的load linked (LL)和store conditional (SC)指令。这些硬件原语可以确保在多处理器系统中实现原子操作。
  6. 避免共享状态的复合操作:在并发编程中,复合操作(如读-改-写)必须被原子化。单独执行的原子操作不会产生原子操作的效果,因此所有对共享状态的访问都必须同步。

   通过以上方法,可以有效地防止编译器错误地融合原子操作,从而确保程序的正确性和性能。

   在并发编程中,不需要的方式通常指的是那些不依赖于显式并发构造或同步机制来实现并行执行的方法。这些方法通过其他手段实现并发效果,从而避免了传统并发编程中常见的复杂性和潜在问题。
   融合原子操作是指将多个原子操作组合成一个整体操作,以确保这些操作在执行过程中不可分割,并且能够作为一个单一的单元进行处理。这种操作通常用于需要同时对多个数据项进行更新的场景,例如在多处理器环境中,通过融合操作可以避免数据竞争和竞态条件,从而提高程序的正确性和性能。

总结

   并发编程是现代软件开发中不可或缺的技术,它通过多线程执行和异步编程实现同时或时间段内执行多个任务,从而提高程序效率和响应速度,充分利用多核处理器的计算能力。并发编程与并行编程的区别在于,并发是多个任务在不同时间点开始和结束,而并行是多个任务在同一时刻同时执行,各自占用不同处理器资源。
   在实现并发编程时,常见的方法包括多线程、多进程、协程以及使用并发编程框架和库。例如,在Python中,可以通过多线程、多进程和异步I/O来实现并发编程。多线程通过Thread类实现,但受全局解释器锁(GIL)的限制,无法充分利用多核CPU;而多进程则能解决GIL问题,适合计算密集型任务和内存使用无限制的场景。异步处理通过asyncio模块实现,适用于不需要真正并发性的场景,尤其适合Web应用服务器。
   并发编程的关键概念包括Future模型、Actor模型、CSP channel等,这些模型强调异步调用和消息传递,以实现高效的任务调度和数据共享。在不同的编程语言中,如C++、Python、Rust和Go,都有相应的并发编程模型的实现。
   并发编程还涉及到分布式编程,特别是在网络编程中的应用,包括远程过程调用(RPC)、消息队列、套接字编程、多线程编程和异步编程等技术。REST架构的基本思想,即面向资源抽象问题,也适用于高效、灵活的网络服务调用和数据传输。
   然而,并发编程也带来了一些挑战,如线程安全性、数据同步和共享资源竞争等问题。开发者需要采取适当的同步和协调机制来解决这些问题。例如,在Java中,可以通过锁、同步容器、线程池等工具来管理并发。
   并发编程是现代软件开发的重要组成部分,通过各种并发编程模型和语言特性,开发者可以构建高性能、高可用性和高可扩展性的系统。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

l_Oct

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值