Clickhouse优点 缺点 / Doris 优点 缺点

本文对比了Doris与ClickHouse的特点。Doris优势在于简单的使用体验、强大的Join性能及优秀的运维特性;而ClickHouse则在导入性能、单表查询性能及可靠性上表现更佳。适合业务场景复杂的数据分析选ClickHouse,追求一站式解决方案选Doris。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

ch优点:
查询速度快,利用多核并行处理单个查询

列式存储+压缩,节省空间
内置数较多(例如IP转化,URL分析等,预估计算/HyperLoglog等);

缺点:
不支持事务
不支持UPDATE/DELETE操作
聚合结果必须小于一台机器的内存大小,否则失败

Clickhouse 优点与缺点 (个人测评) - 知乎

----

Doris支持Array,ch支持Array/嵌套类型/枚举类型等。

Doris支持事务和幂等性导入数据,ch不支持。

Doris的join性能比较好,ch的单表查询性能好。

Doris更优的方面1. 使用更简单,如建表更简单,SQL标准支持更好, Join性能更好,导数功能更强大2. 运维更简单,如灵活的扩缩容能力,故障节点自动恢复,社区提供的支持更好3. 分布式更强,支持事务和幂等性导入数据,物化视图自动聚合,查询自动路由,全面元数据管理

ClickHouse更优的方面1. 性能更佳,导入性能和单表查询性能更好,同时可靠性更好2. 功能丰富,非常多的表引擎,更多类型和函数支持,更好的聚合函数以及庞大的优化参数选项3. 集群管理工具更多,更好多租户和配额管理,灵活的集群管理,方便的集群间迁移工具

那么两者之间如何选择呢?1. 业务场景复杂数据规模巨大,希望投入研发力量做定制开发,选ClickHouse2. 希望一站式的分析解决方案,少量投入研发资源,选择Doris

ApacheDoris和ClickHouse的选型比较 - 百度文库

https://www.csdn.net/tags/NtzaAg2sNzM5ODMtYmxvZwO0O0OO0O0O.html

Apache Doris和ClickHouse的深度分析 - 知乎 

<think>好的,我现在需要分析用户的问题,关于技术架构的典型组成,包括数据存储层、计算引擎、应用层以及具体的组件。用户提到了数据湖、数据仓库、批处理和实时计算引擎、可视化工具、元数据管理以及任务调度系统。 首先,我要确定用户的需求是什么。他们可能是在设计一个大数据平台或者数据中台,需要了解各个层次的典型技术选型。用户可能是架构师或开发人员,希望了解如何构建一个完整的数据处理系统。所以,我需要详细解释每个层次的作用,常用组件,以及它们之间的关系。 接下来,我需要确认每个层次提到的技术是否准确。例如,数据湖的存储通常用HDFS或S3,数据仓库用Hive、ClickHouseDoris等。计算引擎方面,批处理是Hive/Spark,实时用Flink/Kafka。应用层的可视化工具如Superset/Tableau,元数据管理如Atlas/DataHub,任务调度如Airflow/DolphinScheduler。这些组件都是业界常用的,需要正确分类。 然后,我需要考虑用户的潜在需求。他们可能希望了解这些组件如何协同工作,或者如何选择合适的技术。例如,数据湖和数据仓库的区别,批处理与实时计算的应用场景,不同可视化工具的优缺点,以及任务调度系统的选择标准。因此,在回答时不仅要列出组件,还要解释它们的作用和选型考量。 另外,用户可能对架构的整体流程感兴趣,比如数据从存储到处理再到应用的流程。因此,我应该组织内容按照数据流向,从数据存储层到计算引擎,再到应用层,最后是元数据管理和任务调度,形成一个完整的架构图。 需要注意避免技术术语的堆砌,而要解释每个部分的功能和重要性。例如,数据湖用于存储原始日志,适合非结构化数据,而数据仓库存储结构化数据,便于分析。批处理适合离线分析,实时计算处理流数据。可视化工具帮助展示数据,元数据管理维护数据资产,任务调度自动化流程。 可能还需要比较同类技术的优缺点,比如Hive和ClickHouse的区别,或者Airflow与DolphinScheduler的特点,帮助用户做出选择。同时,提到一些实际应用场景,比如电商实时监控使用Flink处理点击流,金融风控使用Spark进行批量数据分析。 最后,总结整体架构的优势和适用场景,确保用户理解如何根据需求搭建合适的技术栈。需要确保回答结构清晰,层次分明,每个部分都有明确的解释,便于用户理解和应用。</think>--- ### **一、技术架构核心分层与典型组件** ```mermaid graph TD A[数据存储层] --> B[数据湖] A --> C[数据仓库] D[计算引擎] --> E[批处理] D --> F[实时计算] G[应用层] --> H[可视化] G --> I[元数据管理] G --> J[任务调度] ``` --- ### **二、分层详解与典型技术选型** #### 1. **数据存储层** | 层级 | 核心功能 | 技术方案 | 典型场景 | |------|----------|----------|----------| | **数据湖** | 存储原始多格式数据 | - Hadoop HDFS(大规模离线)<br>- AWS S3(云原生)<br>- MinIO(私有化部署) | 日志原始存储<br>IoT设备数据落地 | | **数据仓库** | 结构化数据分析 | - Hive(传统数仓)<br>- ClickHouse(OLAP列式存储)<br>- Doris(MPP架构) | 报表生成<br>即席查询 | **选型对比**: - Hive适合稳定ETL批处理场景,计算与存储解耦 - ClickHouse单表查询性能可达$10^{12}$级,但Join能力较弱 - Doris支持标准SQL且兼容MySQL协议,适合实时分析 --- #### 2. **计算引擎** | 类型 | 技术栈 | 吞吐量 | 延迟 | 典型应用 | |------|--------|--------|------|----------| | **批处理** | - Spark(内存计算)<br>- Hive(MapReduce) | TB~PB级 | 分钟~小时级 | 离线报表<br>用户画像 | | **实时计算** | - Flink(流批一体)<br>- Kafka Streams(轻量级) | GB~TB/s | 毫秒~秒级 | 实时风控<br>点击流分析 | **架构示例**: ```python # Flink实时处理伪代码 stream = env.add_source(KafkaConsumer(...)) \ .key_by(lambda x: x["user_id"]) \ .window(TumblingProcessingTimeWindows.of(Time.minutes(5))) \ .reduce(lambda a,b: a["count"]+b["count"]) \ .add_sink(ClickhouseSink(...)) ``` --- #### 3. **应用层** ##### **可视化工具** | 方案 | 开源方案 | 商业方案 | 特点 | |------|----------|----------|------| | BI工具 | - Superset<br>- Metabase | - Tableau<br>- Power BI | 支持SQL查询+拖拽仪表盘 | | 自研系统 | 基于Echarts/AntV开发 | 定制化开发 | 深度业务耦合 | ##### **元数据管理** - **Apache Atlas**:Hadoop生态血缘追踪 - **DataHub**(原WhereHows):支持动态元数据建模 ##### **任务调度** | 系统 | 特点 | 调度规模 | |------|------|----------| | Airflow | 基于DAG的Python定义 | 千级任务 | | DolphinScheduler | 可视化流程设计 | 万级任务 | --- ### **三、典型架构组合模式** #### **Lambda架构示例** ```mermaid graph LR A[Kafka] --> B[Flink实时计算] A --> C[Spark批处理] B --> D[实时结果存储] C --> E[批量结果存储] D & E --> F[统一查询服务] ``` #### **Kappa架构实现** ```python # 全量数据流处理(需消息队列保留历史数据) flink_env = StreamExecutionEnvironment.get_execution_environment() flink_env.set_state_backend(RocksDBStateBackend(...)) ``` --- ### **四、技术演进趋势** 1. **存算分离架构**:对象存储+计算集群弹性扩缩容 2. **湖仓一体**:Delta Lake/Hudi实现ACID事务支持 3. **Serverless化**:AWS Glue/阿里云DLA按需付费模式 4. **智能优化**:基于ML的自动索引推荐(如AWS Redshift) --- 是否需要针对某个具体组件(如Flink调优或数据湖治理)展开详细说明?
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

二十六画生的博客

你的鼓励是我创作最大的动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值