Presto初始化MongoDB元数据

本文探讨了在使用PrestoSQL进行MongoDB跨库查询时遇到的挑战,包括Presto如何处理非结构化数据和自动构建schema的问题。当Presto的schema识别不准确导致UNNEST操作失败时,解决方案可能包括插入标杆数据以修正schema,或者手动调整表的第一条数据。在已生成错误schema的情况下,可以删除_presto_schema表并重新扫描。了解这些技巧对于优化PrestoSQL与MongoDB的集成至关重要。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

最近在使用prestosql做跨库查询,在查询mongodb的时候遇到了问题。

MongoDB是非结构化数据,presto其实已经做了很多工作帮助我们通过SQL的方式去查询它,并且返回的结果也尽量往传统结构化数据库的形式上靠拢,比如在presto sql中使用UNNEST方法,可以将array或map格式的字段平铺开,借用Cross join语法可以实现级联查询。

上面提到的UNNEST操作,通过查看prestosql(338版本)只支持array和map格式的列,否则会报错。

 

在实际使用presto的过程中,发现presto会自行维护一套schema数据(表结构),但是由于mongodb的无结构性,在presto自己生成的这一套schema中会发现有很多列缺失与错误的情况。

 

基于上面的原因,会导致有的列无法UNNEST,原因可能是这一列本身就不是匹配的数据类型,也有可能是这一列的数据类型被presto识别错了。

 

通过继续查看presto的源码,发现其识别schema的原理是查找当前表中第一条数据,然后判断其所有列的数据类型,进而当做整个表的schema定义了。

所以如果在有需要的情况下,可以先手动插入一条标杆数据,用于标注正确的mongodb表结构,让presto能正确识别,然后再插入剩余的业务数据,这样就能保证presto的功能正确运行。

在已经生成了错误schema的情况,并且不想清空mongodb数据,可以尝试手动删除对应库中_schema表(presto默认存储表结构的地方)中的记录,然后修改目标表中第一行数据 或者 在最开头插入标杆数据,然后执行一次表数据查询,又会重新出发一次schema的扫描和生成。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值