Task description:
A prime is a positive integer X that has exactly two distinct divisors: 1 and X. The first few prime integers are 2, 3, 5, 7, 11 and 13.
A prime D is called a prime divisor of a positive integer P if there exists a positive integer K such that D * K = P. For example, 2 and 5 are prime divisors of 20.
You are given two positive integers N and M. The goal is to check whether the sets of prime divisors of integers N and M are exactly the same.
For example, given:
- N = 15 and M = 75, the prime divisors are the same: {3, 5};
- N = 10 and M = 30, the prime divisors aren't the same: {2, 5} is not equal to {2, 3, 5};
- N = 9 and M = 5, the prime divisors aren't the same: {3} is not equal to {5}.
Write a function:
class Solution { public int solution(int[] A, int[] B); }
that, given two non-empty arrays A and B of Z integers, returns the number of positions K for which the prime divisors of A[K] and B[K] are exactly the same.
For example, given:
A[0] = 15 B[0] = 75 A[1] = 10 B[1] = 30 A[2] = 3 B[2] = 5the function should return 1, because only one pair (15, 75) has the same set of prime divisors.
Assume that:
- Z is an integer within the range [1..6,000];
- each element of arrays A, B is an integer within the range [1..2,147,483,647].
Complexity:
- expected worst-case time complexity is O(Z*log(max(A)+max(B))2);
- expected worst-case space complexity is O(1), beyond input storage (not counting the storage required for input arguments).
Solution:
判断两个数是否有相同的素数约数。首先求出公约数gcd_val,那么gcd_val里应该包含了common prime divisor,下面分别判断a跟b与gcd_val的公约数是不是有自己的非common prime divisor的prime divisor
def gcd(x, y):
# Compute the greatest common divisor
if x%y == 0:
return y;
else:
return gcd(y, x%y)
def hasSamePrimeDivisors(x, y):
gcd_value = gcd(x, y) # The gcd contains all
# the common prime divisors
while x != 1:
x_gcd = gcd(x, gcd_value)
if x_gcd == 1:
# x does not contain any more
# common prime divisors
break
x /= x_gcd
if x != 1:
# If x and y have exactly the same common
# prime divisors, x must be composed by
# the prime divisors in gcd_value. So
# after previous loop, x must be one.
return False
while y != 1:
y_gcd = gcd(y, gcd_value)
if y_gcd == 1:
# y does not contain any more
# common prime divisors
break
y /= y_gcd
return y == 1
def solution(A, B):
count = 0
for x,y in zip(A,B):
if hasSamePrimeDivisors(x,y):
count += 1
return count