LLM的工具调用能力(如Function Calling)

LLM的工具调用能力(如Function Calling)是增强大模型实用性的核心技术,使其能够通过生成结构化指令与外部系统交互。以下是关键要点及技术解析:


一、工具调用的定义与原理

  1. 核心机制

    • LLM通过生成符合工具接口的指令(如JSON参数),触发外部工具执行。例如,用户提问天气时,模型生成{"location": "北京", "date": "2025-03-22"},系统调用天气API获取数据。
    • 分工明确:LLM仅负责决策和参数生成,实际执行由业务系统完成。
  2. 技术演进

    • 提示工程:通过Few-shot示例引导模型输出特定格式(如ReAct框架)。例如,动态选择语义相似的示例可提升准确率。
    • 模型微调:如Toolformer模型通过插入API调用标记训练LLM,使其自主决定何时调用工具。

二、主流实现方法

  1. Function Calling接口

    • OpenAI标准:开发者定义工具描述及参数结构,模型返回JSON格式的调用指令。例如,查询天气时返回get_current_weather函数参数。
    • 通用Prompt模板:即使模型原生不支持Function Calling,也可通过Prompt强制输出结构化响应(如要求返回指定JSON格式)。
  2. 框架支持

    • ReAct框架:结合推理(Thought)与行动(Action),通过多轮交互逐步解决问题。例如,先调用搜索工具获取数据,再调用计算工具处理结果。
    • MCP协议:标准化工具接口,动态注册和管理工具服务,降低扩展成本。例如,MCP服务器封装天气API,LLM通过协议自动发现并调用。

三、应用场景与案例

  1. 信息检索

    • 实时数据查询(天气、股票)、知识库增强(RAG)。
    • 案例:电商客服自动调用订单查询API,返回物流状态。
  2. 复杂任务执行

    • 数学计算、代码运行、自动化操作(发送邮件、控制设备)。
    • 案例:用户提问“玫瑰花均价加价15%如何定价”,模型依次调用搜索工具和计算工具。

四、挑战与优化方向

  1. 关键问题

    • 参数准确性:LLM可能生成错误参数,需结合校验机制。
    • 工具管理:工具数量增多时,需动态选择与版本兼容(如MCP协议)。
  2. 解决方案

    • 错误处理:引入重试机制和异常捕获。
    • 评测优化:通过基准测试(如Galileo AI的14项指标)评估模型性能。例如,Gemini-2.0-flash在工具调用综合得分领先。

五、未来趋势

  1. 智能化工具选择
    • LLM根据上下文自动匹配合适工具,减少人工干预。
  2. 生态扩展
    • 工具服务标准化(如MCP协议),形成开放工具市场。
  3. 性能提升
    • 结合硬件加速与算法优化,降低调用延迟。

### 如何在LLMs中执行函数调用或其示例 #### 函数调用的基础概念 大型语言模型(LLM)可以通过提示工程实现复杂的任务自动化。通过特定设计的提示,可以引导LLM完成多步操作,其中包括函数调用的功能[^1]。 #### 使用LangChain表达式语言(LCEL)构建生产级程序 LCEL提供了一种声明式的编程方法来创建能够充分利用LLM能力的应用程序。这种方法允许开发者定义逻辑流并集成外部工具和服务作为功能模块的一部分[^2]。 #### Prompt Chaining中的函数调用应用 在一个更具体的场景中,提示链技术被用来将复杂任务拆解成多个连续的小步骤。每一步都由一次单独的LLM请求构成,并以前一阶段的结果为输入数据继续处理流程。为了保障整个链条正常运作,在某些关键节点设置验证机制是非常必要的——这类似于传统软件开发里的控制结构“门”,用于确认当前状态满足预期条件后再推进下一步动作[^3]。 #### 多模态信号感知下的挑战与发展方向 尽管目前大多数研究集中在单一模式即纯文本形式上的交互方式上,因为这样可以直接利用现有大量自然语言资料库增强AI理解力;但在现实生活中人类交流往往涉及多种感官体验组合而成的信息传递手段。因此如何让这些先进算法具备跨媒体类型的理解能力和行动决策成为未来探索的重要领域之一[^4]。 ```python def llm_function_call(prompt, functions=None): """ Simulates an LLM function call. :param prompt: The input string to send to the model. :param functions: A list of available functions for the model to choose from. :return: Response generated by the simulated LLM based on given parameters. """ response = {"message": "", "function_calls": []} if not isinstance(functions, list) or len(functions)==0: # If no specific functions provided, generate general answer response["message"] = f"Here's my analysis about your query '{prompt}'." else: selected_functions = [] for func in functions: if check_relevance(func['name'], prompt): # Hypothetical relevance checker arguments = extract_arguments_from_prompt(prompt, func['parameters']) called_func = { 'name':func['name'], 'arguments':arguments, } selected_functions.append(called_func) if len(selected_functions)>0: response["function_calls"].extend(selected_functions) response["message"]="I have identified relevant functions and prepared them accordingly." else: response["message"]=f"No applicable functions found related to '{prompt}'." return response # Example Usage functions_list=[ {'name':'search_database', 'parameters':{'query_type':'string'}}, {'name':'send_email', 'parameters':{'recipient':'email','subject':'line','body':'text'}} ] example_response=llm_function_call("Find records matching John Doe",functions_list) print(example_response) ``` 上述代码片段展示了一个模拟版的大规模预训练语言模型(LLM),它可以根据传入的不同参数决定是否以及怎样去调用其他辅助性的子程序(也就是所谓的'functions')。此例子还演示了当存在可用选项时是如何挑选合适的候选者并将它们打包返回给用户的。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值