6 个在本地运行大模型的最佳 LLM 工具

本地运行 LLM 的工具

运行ChatGPTClaude等大型语言模型 (LLM)通常需要将数据发送到OpenAI和其他 AI 模型提供商管理的服务器。虽然这些服务是安全的,但一些企业更愿意将数据完全离线,以获得更好的隐私。

本文介绍了开发人员可以用来在本地运行和测试 LLM 的六大工具,确保他们的数据永远不会离开他们的设备,类似于端到端加密保护隐私的方式。

为什么要使用本地法学硕士 (LLM)

当用户使用LM Studio等工具运行本地 LLM 时,它不会收集用户数据或跟踪用户的操作。它可让您的所有聊天数据保留在本地计算机上,而无需与 AI/ML 服务器共享。

  • 隐私:您可以以多轮方式提示本地 LLM,而无需提示数据离开本地主机。
  • 自定义选项:本地 LLM CPU 线程、温度、上下文长度、GPU 设置等提供高级配置。这类似于 OpenAI 的游乐场。
  • 支持和安全:它们提供与 OpenAI Claude 类似的支持和安全。
  • 订阅和费用:这些工具可免费使用,无需每月订阅。对于像 OpenAI 这样的云服务,每个 API 请求都需要付费。本地 LLM 有助于节省资金,因为无需每月订阅。
  • 离线支持:您可以在离线时加载和连接大型语言模型。
  • 连接性:有时,连接到 OpenAI 等云服务可能会导致信号和连接不佳。

六大免费本地 LLM 工具

根据您的具体使用情况,您可以选择多种离线 LLM 应用程序。其中一些工具完全免费供个人和商业使用。其他工具可能需要向他们发送商业用途请求。有几种本地 LLM 工具可用于 MacWindows Linux。以下是您可以选择的六种最佳工具。

1. LM 工作室

LM Studio可以运行任何格式的模型文件gguf。它支持来自Llama 3.1Phi 3MistralGemmagguf等模型提供商的文件。要使用 LM Studio,请访问上面的链接并为您的机器下载应用程序。启动 LM Studio 后,主页会显示要下载和测试的顶级 LLM。还有一个搜索栏,用于筛选和下载来自不同 AI 提供商的特定模型。

搜索特定公司的模型会出现几种模型,从小到大量。根据您的机器,LM Studio 使用兼容性猜测来突出显示可在该机器或平台上运行的模型。

LM Studio 的主要功能

LM Studio 提供与 ChatGPT 类似的功能和特性。它具有多种功能。以下重点介绍 LM Studio 的主要功能。

  • 模型参数定制:这允许您调整温度、最大令牌、频率惩罚等。
  • 聊天记录:允许您保存提示以供日后使用。
    参数和 UI 提示:您可以将鼠标悬停在信息按钮上以查找模型参数和术语。
  • 跨平台LM Studio 适用于 LinuxMac Windows 操作系统。
  • 机器规格检查LM Studio 检查计算机规格(如 GPU 和内存)并报告兼容型号。这可以防止下载可能无法在特定机器上运行的模型。
  • AI 聊天和游乐场:以多轮聊天格式与大型语言模型进行聊天,并通过同时加载多个 LLM 进行实验。
  • 面向开发人员的本地推理服务器:允许开发人员设置类似于 OpenAI API 的本地 HTTP 服务器。

本地服务器提供示例 Curl Python 客户端请求。此功能有助于使用 LM Studio 构建 AI 应用程序以访问特定的 LLM

# 示例:重用您现有的 OpenAI 设置
from openai import OpenAI

# 指向本地服务器
client = OpenAI(base_url= "http://localhost:1234/v1" , api_key= "lm-studio" )

finish = client.chat.completions.create(
  model=
"TheBloke/Mistral-7B-Instruct-v0.1-GGUF" ,
  messages=[
    {
"role" : "system" , "content" : "Always an

<think>好的,我现在需要帮助用户了解如何在本地环境中部署DeepSeek并配置LLM大型语言模型。根据用户提供的引用内容,我需要整合这些信息,并生成一个结构清晰的教程。 首先,用户提到了三个引用:[^1]、[^2]、[^3]。引用详细介绍了使用Ollama和AnythingLLM进行本地部署的步骤,包括下载ollama、安装模型、配置AnythingLLM以及构建本地数据库。引用强调了DeepSeek-V3的架构特点,如MoE、MLA等,但可能对实际部署步骤帮助不大。引用[^3]则补充了ollama的安装命令、配置选择和不同版本的比较,如R1和V3的区别。 我需要将这些信息组织成一个连贯的教程。首先,应该分步骤进行,比如安装Ollama、下载模型、配置AnythingLLM、构建本地数据库。同时,用户可能关心不同版本的区别,比如R1和V3,所以需要在步骤中说明如何选择模型版本。 接下来,我需要确保每个步骤都清晰,并正确引用对应的来源。例如,在安装Ollama时,引用和都提到了下载和命令,需要结合起来。下载模型时,用户需要知道具体的命令,比如`ollama pull deepseek-r1`,这来自引用和[^3]。 然后,配置AnythingLLM的部分需要详细说明安装步骤、初始化设置、模型绑定和数据库配置。引用提到了上传数据库测试,所以需要指导用户如何上传文件并测试效果。 此外,用户可能遇到的问题,比如性能分析或优化方法,但根据用户的问题,主要是部署和配置,所以相关问题应该围绕部署后的使用、优化和应用场景展开。例如,如何优化响应速度,或者本地部署的应用场景。 需要注意避免使用用户不可见的格式,保持回答的中文,并正确应用LaTeX格式(虽然问题中可能较少涉及数学公式,但如果有变量或代码块需要处理)。例如,代码块需要用反引号包裹,并标明语言,如Python。 最后,需要检查每个步骤是否引用了正确的来源,确保引用标识自然添加在段落末尾。例如,在提到Ollama安装时,末尾添加[^1],在讨论模型版本时引用。 总结下来,教程的结构应该是: 1. 环境准备 - 安装Ollama - 下载模型 2. 配置AnythingLLM - 安装 - 初始化设置 - 绑定模型 3. 构建本地数据库 - 上传文件 - 测试 4. 版本区别说明 5. 注意事项 6. 相关问题 每个部分都需要结合引用内容,并正确标注来源。同时,确保语言简洁明了,步骤可行,适合小白用户操作。</think>以下是在本地部署DeepSeek并配置LLM的详细教程,整合了Ollama框架与AnythingLLM工具链的最佳实践: ### 一、环境准备 1. **安装Ollama** 访问[Ollama官网](https://ollama.ai/)下载对应系统的安装包,完成基础框架部署。验证安装是否成功: ```bash ollama --version ``` 2. **下载模型** 通过命令行获取DeepSeek模型(以R1版本为例): ```bash ollama pull deepseek-r1 ``` 支持多版本选择: - R1版:适合常规NLP任务 - V3版:采用MoE架构,需更高配置(推荐16GB+显存) ### 二、配置AnythingLLM 1. **安装部署** 从[AnythingLLM官网](https://useanything.com/)下载桌面客户端,支持Windows/macOS/Linux三平台 2. **初始化设置 ```markdown 设置路径: 1. 选择工作空间目录 2. 配置模型绑定 -> 选择Ollama接口 3. 输入本地API地址:http://localhost:11434 ``` 3. **模型绑定演示** ```python # 示例模型调用代码 from langchain.llms import Ollama llm = Ollama(base_url='http://localhost:11434', model="deepseek-r1") print(llm("解释量子计算的基本原理")) ``` ### 三、构建本地数据库 1. **上传知识库** - 支持格式:PDF/TXT/Word/Markdown - 文件容量:单文件建议不超过50MB 2. **Embedding配置 ```markdown 高级设置中下载中文embedding模型: - 推荐模型:text2vec-large-chinese - 维度设置:保持默认1024维度 ``` 3. **测试查询 ```bash curl -X POST http://localhost:3001/api/v1/query \ -H "Content-Type: application/json" \ -d '{"query": "检索文档中的关键技术指标"}' ``` ### 四、版本特性对比 | 特性 | DeepSeek-R1 | DeepSeek-V3 | |-----------|-------------|-------------------| | 参数量 | 16B | 671B(MoE架构) | | 内存需求 | 8GB+ | 16GB+ | | 响应速度 | 快速 | 需优化计算资源分配 | | 适用场景 | 通用对话 | 复杂推理任务 | | 训练策略 | 标准训练 | 多token预测+负载平衡策略 | ### 五、注意事项 1. 首次运行需下载约4-8GB模型文件 2. 建议关闭防火墙或设置白名单规则 3. 中文处理需额外加载分词模型
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

牛马尼格

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值