Sqlalchemy 中count函数的坑

当数据量达到百万级别时,使用Sqlalchemy ORM的count()方法获取数据总数会出现性能问题。文章讨论了该问题及其解决方案。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

最近项目中用了Sqlalchemy orm,开始数据不多的时候用coun()函数不会慢,但是当数据到百万级的时候,filter_obj.count()来获取数据总数,就明显感觉慢了。

看官方API的描述:

count ( )

Return a count of rows this Query would return.

This generates the SQL for

### SQLAlchemy 查询操作 使用指南 SQLAlchemy 是一个功能强大且灵活的 Python SQL 工具包和对象关系映射器(ORM),它为应用程序开发者提供了完整的 SQL 功能和灵活性[^4]。通过 SQLAlchemy,可以方便地执行查询操作以从数据库中检索数据。 以下是使用 SQLAlchemy 进行查询操作的基本方法: #### 1. 查询所有记录 在 SQLAlchemy 中,可以通过 `query` 方法结合模型类来查询数据库中的所有记录。例如,假设有一个名为 `User` 的模型类,可以通过以下代码查询所有用户记录: ```python from sqlalchemy.orm import sessionmaker # 假设已经创建了 Session 和 User 模型 session = Session() # 查询所有记录 users = session.query(User).all() for user in users: print(user.name) ``` 上述代码展示了如何使用 `query` 方法获取所有记录,并通过 `.all()` 方法将结果作为列表返回[^5]。 #### 2. 根据条件查询 可以使用 SQLAlchemy 提供的过滤器函数(如 `filter`、`filter_by`)来根据特定条件查询记录。例如,查询名字为 "Alice" 的用户: ```python # 使用 filter 方法 alice = session.query(User).filter(User.name == "Alice").first() # 或者使用 filter_by 方法 alice = session.query(User).filter_by(name="Alice").first() if alice: print(alice.id, alice.name) ``` 这里使用了 `filter` 和 `filter_by` 方法来指定查询条件,并通过 `.first()` 获取满足条件的第一个记录[^5]。 #### 3. 排序查询结果 可以使用 `order_by` 方法对查询结果进行排序。例如,按用户的年龄升序排列: ```python # 升序排序 users = session.query(User).order_by(User.age.asc()).all() # 降序排序 users = session.query(User).order_by(User.age.desc()).all() ``` 上述代码展示了如何通过 `asc()` 和 `desc()` 方法指定排序方向[^5]。 #### 4. 分页查询 当处理大量数据时,分页查询是一个常见的需求。可以使用 `limit` 和 `offset` 方法实现分页: ```python # 查询第一页的前 10 条记录 page_size = 10 page = 1 users = session.query(User).limit(page_size).offset((page - 1) * page_size).all() ``` 这段代码实现了分页查询,其中 `limit` 限制返回的记录数,`offset` 指定跳过的记录数。 #### 5. 复杂查询条件 对于更复杂的查询条件,可以使用 SQLAlchemy 提供的逻辑运算符,如 `and_`、`or_` 和 `not_`: ```python from sqlalchemy import and_, or_ # 使用 and_ 和 or_ 构造复杂条件 complex_query = session.query(User).filter( and_(User.age > 20, or_(User.name == "Alice", User.name == "Bob")) ).all() for user in complex_query: print(user.name, user.age) ``` 上述代码展示了如何使用 `and_` 和 `or_` 构造复杂的查询条件[^5]。 #### 6. 聚合查询 SQLAlchemy 支持聚合函数(如 `count`、`sum` 等)。例如,统计用户总数: ```python from sqlalchemy import func # 统计用户总数 user_count = session.query(func.count(User.id)).scalar() print(f"Total users: {user_count}") ``` 此代码片段展示了如何使用 `func` 模块调用 SQL 聚合函数[^4]。 ---
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值