从分布式架构视角解析电商导购系统的高并发设计与实现
大家好,我是阿可,微赚淘客系统及省赚客APP创始人,是个冬天不穿秋裤,天冷也要风度的程序猿!
一、电商导购系统的高并发挑战与架构选型
电商导购系统作为连接用户与电商平台的中间层,需处理商品查询、优惠券分发、佣金结算等核心业务,在促销活动期间常面临每秒数万次的请求压力。从分布式架构视角看,需解决三个核心问题:流量削峰、数据一致性、服务弹性伸缩。
以聚娃科技的省赚客APP为例,其架构采用"前端层-网关层-服务层-数据层"的四层设计:
- 前端层:静态资源CDN分发,动态数据本地缓存
- 网关层:基于Spring Cloud Gateway实现路由转发与限流
- 服务层:微服务拆分(商品服务、用户服务、订单服务等)
- 数据层:分库分表+多级缓存架构
二、网关层设计:流量入口的防护机制
网关作为流量入口,需实现限流、熔断、认证等功能。以下是基于Spring Cloud Gateway的限流配置示例:
@Configuration
public class GatewayConfig {
@Bean
public RouteLocator customRouteLocator(RouteLocatorBuilder builder) {
return builder.routes()
.route("product_route", r -> r.path("/api/products/**")
.filters(f -> f
.requestRateLimiter(c -> c
.setRateLimiter(redisRateLimiter())
.setKeyResolver(userKeyResolver()))
.circuitBreaker(c -> c.setName("productServiceCircuitBreaker")
.setFallbackUri("forward:/fallback/products")))
.uri("lb://product-service"))
.build();
}
@Bean
public KeyResolver userKeyResolver() {
return exchange -> Mono.just(
Optional.ofNullable(exchange.getRequest().getHeaders().getFirst("X-User-ID"))
.orElse("anonymous")
);
}
@Bean
public RedisRateLimiter redisRateLimiter() {
// 令牌桶算法:1000个令牌/秒,burst容量2000
return new RedisRateLimiter(1000, 2000);
}
}
三、服务层设计:微服务的高可用实践
3.1 服务拆分原则与通信方式
采用领域驱动设计(DDD)拆分服务,核心服务包括:
- 商品服务(负责商品信息聚合与推荐)
- 订单服务(处理返利订单创建与状态同步)
- 佣金服务(计算与结算用户佣金)
服务间通过Feign实现同步通信,异步场景采用RabbitMQ:
// 商品服务Feign客户端
@FeignClient(name = "product-service", fallback = ProductServiceFallback.class)
public interface ProductFeignClient {
@GetMapping("/api/products/{id}")
Result<ProductDTO> getProductById(@PathVariable("id") Long id);
@GetMapping("/api/products")
Result<PageInfo<ProductDTO>> searchProducts(
@RequestParam("keyword") String keyword,
@RequestParam("pageNum") int pageNum,
@RequestParam("pageSize") int pageSize
);
}
// 熔断器实现
@Component
public class ProductServiceFallback implements ProductFeignClient {
@Override
public Result<ProductDTO> getProductById(Long id) {
return Result.fail("商品服务暂时不可用,请稍后重试");
}
// 省略其他方法...
}
3.2 分布式事务处理
导购系统的佣金结算需保证订单状态与佣金记录的一致性,采用TCC模式实现:
@Service
public class CommissionTccService {
@Autowired
private CommissionMapper commissionMapper;
// Try阶段:预留佣金记录
@Transactional
public boolean prepareCommission(CommissionDTO dto) {
CommissionDO commission = new CommissionDO();
commission.setOrderId(dto.getOrderId());
commission.setUserId(dto.getUserId());
commission.setAmount(dto.getAmount());
commission.setStatus(CommissionStatus.PREPARED);
return commissionMapper.insert(commission) > 0;
}
// Confirm阶段:确认佣金生效
@Transactional
public boolean confirmCommission(Long orderId) {
return commissionMapper.updateStatus(orderId, CommissionStatus.CONFIRMED) > 0;
}
// Cancel阶段:取消预留佣金
@Transactional
public boolean cancelCommission(Long orderId) {
return commissionMapper.updateStatus(orderId, CommissionStatus.CANCELED) > 0;
}
}
四、数据层设计:分库分表与缓存策略
4.1 分库分表实现
采用Sharding-JDBC对订单表进行分库分表,按用户ID哈希分片:
spring:
shardingsphere:
datasource:
names: ds0,ds1
ds0:
type: com.zaxxer.hikari.HikariDataSource
driver-class-name: com.mysql.cj.jdbc.Driver
jdbc-url: jdbc:mysql://localhost:3306/order_db0
username: root
password: root
ds1:
# 配置省略...
rules:
sharding:
tables:
t_order:
actual-data-nodes: ds${0..1}.t_order_${0..31}
database-strategy:
standard:
sharding-column: user_id
sharding-algorithm-name: order_db_inline
table-strategy:
standard:
sharding-column: order_id
sharding-algorithm-name: order_table_inline
sharding-algorithms:
order_db_inline:
type: INLINE
props:
algorithm-expression: ds${user_id % 2}
order_table_inline:
type: INLINE
props:
algorithm-expression: t_order_${order_id % 32}
4.2 多级缓存架构
实现"本地缓存+Caffeine+Redis"三级缓存,以商品详情查询为例:
@Service
public class ProductServiceImpl implements ProductService {
@Autowired
private ProductMapper productMapper;
@Autowired
private StringRedisTemplate redisTemplate;
// 本地缓存,TTL 5分钟,最大容量10000
private final LoadingCache<Long, ProductDTO> localCache = Caffeine.newBuilder()
.expireAfterWrite(5, TimeUnit.MINUTES)
.maximumSize(10000)
.build(this::loadProductFromDb);
@Override
public ProductDTO getProductById(Long id) {
// 1. 查本地缓存
try {
return localCache.get(id);
} catch (Exception e) {
// 缓存失效,继续查询Redis
}
// 2. 查Redis
String key = "product:info:" + id;
String json = redisTemplate.opsForValue().get(key);
if (StringUtils.hasText(json)) {
ProductDTO dto = JSON.parseObject(json, ProductDTO.class);
// 回写本地缓存
localCache.put(id, dto);
return dto;
}
// 3. 查数据库
ProductDTO dto = loadProductFromDb(id);
if (dto != null) {
redisTemplate.opsForValue().set(key, JSON.toJSONString(dto), 30, TimeUnit.MINUTES);
localCache.put(id, dto);
}
return dto;
}
private ProductDTO loadProductFromDb(Long id) {
ProductDO product = productMapper.selectById(id);
return ConvertUtils.convert(product, ProductDTO.class);
}
}
五、弹性伸缩与监控告警
基于Kubernetes实现服务自动扩缩容,配置HPA规则:
apiVersion: autoscaling/v2
kind: HorizontalPodAutoscaler
metadata:
name: product-service-hpa
spec:
scaleTargetRef:
apiVersion: apps/v1
kind: Deployment
name: product-service
minReplicas: 3
maxReplicas: 20
metrics:
- type: Resource
resource:
name: cpu
target:
type: Utilization
averageUtilization: 70
- type: Resource
resource:
name: memory
target:
type: Utilization
averageUtilization: 80
监控体系采用Prometheus+Grafana,自定义业务指标:
@Component
public class BusinessMetricsCollector {
private final MeterRegistry meterRegistry;
public BusinessMetricsCollector(MeterRegistry meterRegistry) {
this.meterRegistry = meterRegistry;
}
// 记录商品查询次数
public void recordProductQuery(Long productId) {
meterRegistry.counter("business.product.query",
"productId", productId.toString()).increment();
}
// 记录订单转化率
public void recordOrderConversion(String channel) {
meterRegistry.counter("business.order.conversion",
"channel", channel).increment();
}
}
本文著作权归聚娃科技省赚客app开发者团队,转载请注明出处!