AI 本地环境配置:一文梳理 Nvidia驱动/CUDA/CUDNN/PyTorch/Paddle 版本兼容&安装问题(持续更新)

前两天,有位粉丝朋友,在本地部署大模型时,在安装flash_attn遇到了很多问题,比如:

"flash_attn" module. while I tried to install flash_attn, It mentioned " RuntimeError: FlashAttention is only supported on CUDA 11 and above".

Linux、显卡、nvidia、CUDA/CUDNN、Pytorch、TensorFlow、PaddlePaddle,还有各种依赖库。

各种版本兼容,让很多朋友在学习 AI 的过程中,倒在了配置环境的路上。

今日分享,将系统梳理上述概念之间的依赖关系,以及如何安装,希望给遇到类似问题的小伙伴,一点点帮助。

1. 显卡和驱动

跑大模型,自然免不了 Nvidia 家的显卡。

所以,第一步需要查看显卡类型。

通常来说,你的系统镜像出厂时可能已经装好 Nvidia 驱动,因此输入 nvidia-smi,即可看到显卡类型。

重点需要关注的有下方三个红色框选:

最下方就是你的显卡型号,左上角是当前的显卡驱动版本,右上角是当前显卡驱动最高支持的 CUDA 版本(向下兼容),但并不代表环境中的 CUDA 版本!!!

所以,当你发现 CUDA 版本出问题时,记得来这里看看:右上角红框的数字是多少?

如果太低,意味着要更新显卡驱动了!

因为每个 CUDA 版本都有特定的最低驱动程序版本要求,比如 CUDA 12.0 驱动版本至少为 510.xxx。

怎么更新?

当前显卡能够支持的最高驱动版本,在哪查看

前往 NVIDIA 官网:https://www.nvidia.com/en-us/drivers/

拿 RTX 3090 举例,点击 Find:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值