人工智能学习路线

本文概述了Python3中的基础语法、Numpy、Pandas和Matplotlib库,以及机器学习的基础概念如分类、回归任务和各种算法。重点介绍了Tensorflow在深度学习中的应用,包括CNN、RNN和GAN,展示了深度学习在图像识别和序列数据处理中的作用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

(一)Python3

基础语法、Numpy计算库、Pandas分析库、Matplotlib可视库

(二)机器学习(数据-算法-模型-结果)

分类任务/回归任务、监督学习/非监督学习、离线学习/在线学习

K邻近、线性回归、多项式回归、逻辑回归、决策树、随机森林、梯度下降、梯度上升、集成学习

Scikit-learn机器学习

(三)深度学习

Tensorflow生态(Life、JS、Extended、Pro、TPUCloud(cpu、gpu))

Tensorflow特点(GPU加速、自动求导、神经网络API)

CNN(卷积神经网络):

一种用于图像识别和分类任务的深度学习神经网络类型。

CNN被设计用于自动和自适应地从输入数据中学习空间特征层次。

RNN(循环神经网络):

一种神经网络架构,专门用于处理序列数据。

RNN具有形成有向循环的连接,使信息能够随时间持续存在。

这使其适用于时间序列预测、自然语言处理和语音识别等任务。

GAN(生成对抗网络):

一种深度学习模型,由两个神经网络组成,分别是生成器和判别器,它们在竞争环境中同时进行训练。

生成器创建新的数据样本,而判别器试图区分真实数据和生成数据。

GAN通常用于生成逼真的图像、视频和其他类型的数据。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

大连赵哥

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值