
深度学习
文章平均质量分 85
介绍深度学习入门,基于 Python 的理论与实现
江南野栀子
人在红尘里,心在山水间。
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
7. 3 层神经网络的实现和输出层的激活函数
1 层神经元到 2 层神经元,其实非常类似输入层数据到 1 层神经元。在神经网络中,输出层的激活函数,要根据求解问题的性质决定。一般的回归问题可以使用恒等函数,二元分类问题可以使用 sigmoid 函数,多元分类问题可以使用 softmax 函数。下面我们看一下简单的 3 层神经网络,它由输入层、1层神经元、2层神经元、输出层神经元组成。2 层神经元到 输出层神经元,区别在于它的激活函数不一样。y 曲线不是平稳上升的,在很大的区间范围内,它都接近于 0 ,只是在数据区间的末端,才迅猛上升,无限接近于 1。原创 2024-05-17 11:12:50 · 988 阅读 · 0 评论 -
6. 神经网络的内积
z=w⋅x+b 其中,𝑤w 是权重向量,𝑥x 是输入向量,𝑏b 是偏置,𝑧z 是线性变换的结果。: 在一些特殊的应用场合,如推荐系统和自然语言处理中的词向量(word embedding)表示中,内积常用来计算向量之间的相似度或相异度。原创 2024-05-14 11:23:00 · 953 阅读 · 0 评论 -
5.神经网络-激活函数
在下面的文章中提到了激活函数,事实上激活函数有很多种,本文介绍两种最常见的。另外文章中可能会用到一些 numpy、Matplotlib 模块的知识,同学们如果没有了解可以看看下面的文章。原创 2024-05-11 15:38:32 · 1151 阅读 · 1 评论 -
4. 从感知机到神经网络
不过在感知机中设定权重的工作是由人工来做的,而设定合适的,符合预期的输入与输出的权重,是一项非常繁重的工作。从下图可以看到,最左边的即输入层, 0 层;其中只有输入层、中间层具有权重,可以称之为 2 层网络,也可以按照网络的级数称之为 3 层网络。请注意,此处激活函数以阈值为界,一旦输入超过阈值,就切换输出,这样的函数称之为“阶跃函数”。感知机是选择了阶跃函数,如果感知机选择了其他函数作为激活函数,那么就进入了神经网络的世界了!有了激活函数的引入,原来的感知机图,就可以转换为神经元图。原创 2024-05-10 16:58:01 · 477 阅读 · 0 评论 -
3. 多层感知机算法和异或门的 Python 实现
单层感知机只能表示线性空间,多层感知机就可以表示非线性空间。多层感知机在理论上可以表示计算机。原创 2024-05-10 16:01:23 · 1027 阅读 · 2 评论 -
2. 感知机算法和简单 Python 实现
感知机1957年由Rosenblatt提出,是神经网络与支持向量机的基础。它是最简单最基础的机器学习算法,可以用于处理最简单的二分类任务,并且模型和学习算法都十分简单。感知机是具有输入和输出的算法。给定一个或者输入之后,将输出一个既定的值。感知机接收多个输入信号,输出一个信号。输入信号可以用 0 或者 1 表示,0 表示 “不传递信号”,1 表示 “传递信号”。从多个输入信号到一个输出信号,即感知机算法。最简单的感知机算法可以理解为 1 个输入信号 x,输出 y;算法即 y = x。原创 2024-05-10 11:10:50 · 1244 阅读 · 0 评论 -
1. 介绍 Matplotlib
Matplotlib 可能是 Python 2D-绘图领域使用最广泛的套件。它能让使用者很轻松地将数据图形化,并且提供多样化的输出格式。在Python中安装Matplotlib库通常使用pip工具。以下是安装Matplotlib的步骤:打开终端(在Windows上是命令提示符或PowerShell,在MacOS或Linux上是终端)。如果你使用的是 Python3,可能需要使用pip3而不是pip如果你在使用Jupyter Notebook,你可能想要使用%pip或!pip!原创 2024-05-10 09:42:07 · 734 阅读 · 0 评论