RCNN 系列之SPPNet详解

SPPNet解决了传统卷积神经网络需要固定输入尺寸的问题,通过空间金字塔池化层实现了对任意尺寸图像的有效特征提取,显著提高了目标检测的速度和效率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

RCNN系列:RCNN,SPPNet,Fast RCNN,Faster RCNN,R-FCN。这一系列是个递进关系,也是目标检测使用two-stage方法的一个发展过程。想要更好的理解Faster RCNN和R-FCN,只能把这算法都梳理清楚了,才能明白这个递进过程。
本篇讲解的是SPPNet。2015年发表在IEEE。

SPPNet为何出现?

之前的网络,比如LeNet,AlexNet,ZF,VGG等,它们的输入都是固定大小的,为什么要固定大小呐?原因就在最后连接的全连接层上。全连接层的输入一定是固定大小的。这一点很容易理解,因为全连接层网络就是传统的神经网络,传统的神经网络的输入层必定是固定大小的。而卷积神经网络的conv层的输入并不需要固定大小,
看完连接中的文章就明白为什么conv层不用固定大小了。
那么conv层不用固定大小,FC层的输入又要固定大小,那么在这两者之间加上一层SPP即可解决这个问题了。
下图即是SPPNet和其他的网络不同。
以上也即回答了SPPNet是什么和能做什么,总结一下,SPPNet就是为了能够让CNN能够输入不同尺度的图片。

SPP如何实现的?

SPP(spatial pyramid pooling),中文名字就是空间金字塔池化。我的理解就是一种编码方式。以上图举例,黑色图像就是conv5出来的feature map,之前我们输入的图片是固定大小的,那么在conv5输出的feature map同样具有统一的大小。那现在如果输入不是固定的大小了,那么conv5输出的feature map是不同的尺寸。我们再以两种大小13*13,10*10的feature map来举例,这两个feature map大小不同,我们使用三种尺度的filter来做pooling,但最终的结果是可以得到4*4,2*2,1大小的256channels的feature map。那么再把这些feature map 级联在一起,就可以有固定大小的输出了。其实就是无论多大的feature map输入到SPP中,SPP都会输出一个固定的k*M大小输出。M就是我们选择的4*4+2*2+1,k就是输入feature map的通道数。

说的那么好,这种方法到底work 不work呐?
那就是论文的实验部分了,当然,深度学习论文中的实验部分非常关键,都是一些作者的训练深度网络的调参技巧。这一部分可以参考论文了,没有什么难点。

SPPNet现在已经完成了分类功能,那么怎么用它来做检测呐?
做检测首先要和RCNN做对比:

上图对比,

RCNN的整个过程是这样的:
  1. 通过selective search算法为每一张待检测图片提取出2000左右的候选框;
  2. 每张图片中的候选框调整到227*277大小,然后分别输入到CNN中提取特征;
  3. 提取到的特征后,利用svm对这些特征进行分类识别;
  4. 利用NMS算法对结果进行抑制处理。
2000个左右的proposal都要使用CNN来提取特征,计算量是很大的。然后利用这些特征进行分类时,同样需要很大的内存。

SPPNet的整个过程:
  1.  同样是使用selective search算法为每一张待检测的图片提取出2000左右的候选框,这一点和RCNN相同;
  2. 特征提取阶段,整个图片输入到SPPNet中,提取出整张图片的feature map,然后将原图上的候选框映射到feature map上。然后对各个候选框对应的feature map上的块做金字塔空间池化,提取出固定长度的特征向量;
  3. 使用SVM算法对得到的特征向量分类识别;
  4. 使用NMS做极大值抑制。
SPPNet和RCNN最大的不同就在于第二步处理上,对一张图片只做一次特征提取,显然会提高效率,速度得到很大的提升。

其中第二步将原图上的候选框映射到feature map上算是比较关键的点,怎么做映射呐?
假设(x',y')表示特征图上的坐标点,(x,y)表示原图上的坐标点,那么我们希望通过 (x,y)来求解 (x',y'),作者给出的计算公式如下:
其中,S是SPPNet中所有的strides的乘积,包含了池化和卷积的stride。
对以上公式的理解,要建立在卷积的过程上,我们再看一遍卷积的过程:
假设上图的左上角的点和右下角的点标出的区域就是我们要的候选区域,那么它对应的feature map即是右图。
我们就是利用这个区域两个点的坐标来求出来feature map上的对应的区域即可。
当然feature map上的一个点其实是对应了原图上的一个区域,我们也称作感受野。那么这样映射肯定会有误差的。这里不做过多的计较了。


总结:由于只关心检测过程,那么SPPNet对RCNN最大的提高即是:
RCNN对每个候选区域提取特征,
SPPNet 对整张图片提取特征然后根据候选区域去映射出候选区域的特征。
当然能够这样做的原因是在于SPP层,SPP层的存在可以让CNN输入不同大小的图片。




参考:
Spatial Pyramid Pooling in Deep Convolutional  Networks for Visual Recognition



















<think>好的,我现在需要回答用户关于Fast R-CNN的问题。首先,用户已经提到了R-CNN系列的其他算法,比如R-CNN、SPPNet、Faster R-CNN和Mask R-CNN,并引用了相关的资料[^1][^2]。用户可能已经对这些算法有了一定的了解,现在想重点了解Fast R-CNN的原理、实现和应用场景。 首先,我应该回顾Fast R-CNN的基本原理。根据之前的R-CNN发展,R-CNN的一个主要问题是速度慢,因为它对每个候选区域单独进行卷积运算,导致大量重复计算。SPPNet通过空间金字塔池化(SPP)层解决了这个问题,允许网络对任意大小的区域进行特征提取,但训练过程仍然是多阶段的。Fast R-CNN在此基础上做了改进,整合了特征提取、分类和边界框回归,实现了端到端的训练,同时提高了速度和精度。 接下来需要整理Fast R-CNN的关键改进点。首先是ROI Pooling,取代了SPP层,将不同大小的候选区域转换为固定大小的特征图。其次是多任务损失函数,将分类损失和回归损失结合在一起,简化了训练流程。此外,Fast R-CNN不需要将特征存储在磁盘上,减少了内存消耗。 然后需要说明算法流程。输入图像经过CNN得到特征图,然后提取候选区域(如通过Selective Search),通过ROI Pooling处理这些区域,最后通过全连接层进行分类和回归。这部分需要简明扼要,突出步骤间的逻辑。 关于实现方法,用户可能关心代码结构。需要提供一个简化的PyTorch示例,包括模型定义、ROI Pooling的使用以及多任务损失的计算。代码应展示关键部分,如特征提取、ROI处理和损失函数,但不需要完整实现,避免过于复杂。 应用场景方面,Fast R-CNN适用于需要较高检测精度和实时性要求的场合,比如自动驾驶、视频监控等。可以举例说明其在工业界和学术界的应用。 最后,生成相关问题时要围绕Fast R-CNN的改进点、与其他算法的对比、实现细节和应用展开,帮助用户深入理解。 需要确保所有数学公式和术语符合格式要求,使用中文回答,结构清晰。同时检查引用是否正确,引用标识是否自然添加。避免使用Markdown格式,保持回答流畅自然。</think>### Fast R-CNN 算法详解 #### 一、算法背景 Fast R-CNN 是 R-CNN 系列的第二代改进模型,解决了 R-CNN 和 SPPNet 的计算冗余和多阶段训练问题[^1]。其核心改进在于**端到端训练**和**特征共享**,将检测速度提升至 R-CNN 的 200 倍以上。 #### 二、核心原理 1. **特征共享** 输入整张图像至卷积神经网络(CNN),生成共享特征图,避免重复计算候选区域的特征[^2]。 2. **ROI Pooling 层** 将不同尺寸的候选区域(Region of Interest, ROI)映射为固定大小(如 $7×7$)的特征图。公式描述: $$ \text{ROI Pooling}(x_i, h, w) = \max_{0≤m< \frac{h}{H}} \max_{0≤n< \frac{w}{W}} x_i(m,n) $$ 其中 $H×W$ 是输出尺寸,$h×w$ 是输入区域尺寸。 3. **多任务损失函数** - 分类损失:Softmax 交叉熵 - 边界框回归损失:Smooth L1 损失 总损失函数为二者加权和: $$ L = L_{\text{cls}} + \lambda L_{\text{reg}} $$ #### 三、算法流程 1. 输入图像通过 CNN 生成特征图 2. 使用 Selective Search 提取约 2000 个候选区域 3. ROI Pooling 将候选区域特征标准化 4. 全连接层输出分类结果和边界框回归参数 #### 四、PyTorch 简化实现 ```python import torch import torchvision from torch import nn class FastRCNN(nn.Module): def __init__(self, num_classes): super().__init__() # 特征提取层(使用预训练VGG16) self.backbone = torchvision.models.vgg16(pretrained=True).features # ROI Pooling层 self.roi_pool = torchvision.ops.RoIPool((7,7), spatial_scale=1/16) # 分类与回归头 self.fc = nn.Sequential( nn.Linear(512*7*7, 4096), nn.ReLU(), nn.Linear(4096, 4096), nn.ReLU() ) self.cls_head = nn.Linear(4096, num_classes) self.reg_head = nn.Linear(4096, 4*num_classes) def forward(self, images, rois): # 提取共享特征 features = self.backbone(images) # [batch, 512, H/16, W/16] # ROI Pooling pooled = self.roi_pool(features, rois) # [num_rois, 512,7,7] # 全连接处理 flattened = pooled.flatten(1) # [num_rois, 512*7*7] fc_out = self.fc(flattened) # 输出结果 cls_scores = self.cls_head(fc_out) # [num_rois, num_classes] reg_params = self.reg_head(fc_out) # [num_rois, 4*num_classes] return cls_scores, reg_params ``` #### 五、应用场景 1. **实时视频分析**:如监控系统中的人/车检测 2. **医学影像处理**:病灶区域定位 3. **自动驾驶**:道路目标实时检测
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值