opencv java 扫描仪 图片增强

上一篇写了图像提取 和方位纠正  这篇 进行图片增强

import org.opencv.core.*;
import org.opencv.highgui.HighGui;
import org.opencv.imgcodecs.Imgcodecs;
import org.opencv.imgproc.Imgproc;

public class GammaCorrection {
	
	static {
    	String opencvLibPath = "D:\\Program Files\\desk\\opencv\\build\\java\\x64\\opencv_java4100.dll";
		// System.setProperty("java.library.path",
		// System.getProperty("java.library.path") + ";" + opencvLibPath);
 
		System.load(opencvLibPath);
 
    }


    // Gamma校正 fGamma=0.45是常用值
    public static void gammaCorrection(Mat src, Mat dst, float fGamma) {
        // 检查输入图像是否为空
        if (src.empty()) {
            throw new IllegalArgumentException("输入图像为空");
        }

        // 构建查找表
        byte[] lut = new byte[256];
        for (int i = 0; i < 256; i++) {
            lut[i] = (byte) Math.min(255, Math.pow(i / 255.0, fGamma) * 255.0);
        }

        // 克隆输入图像到输出图像
        src.copyTo(dst);

        // 获取图像的通道数
        int channels = dst.channels();

        if (channels == 1) {
            // 单通道图像
            for (int i = 0; i < dst.rows(); i++) {
                for (int j = 0; j < dst.cols(); j++) {
                    byte[] data = new byte[1];
                    dst.get(i, j, data);
                    data[0] = lut[data[0] & 0xFF];
                    dst.put(i, j, data);
                }
            }
        } else if (channels == 3) {
            // 三通道图像
            for (int i = 0; i < dst.rows(); i++) {
                for (int j = 0; j < dst.cols(); j++) {
                    byte[] data = new byte[3];
                    dst.get(i, j, data);
                    data[0] = lut[data[0] & 0xFF];
                    data[1] = lut[data[1] & 0xFF];
                    data[2] = lut[data[2] & 0xFF];
                    dst.put(i, j, data);
                }
            }
        }
    }

    public static void main(String[] args) {
        // 加载OpenCV库


        // 读取图像
        Mat image = Imgcodecs.imread("D:\\newWorK\\knanaEWB_new/src.jpg");

        // 克隆图像并进行类型转换
        Mat src = image.clone();
        src.convertTo(src, CvType.CV_32FC3, 1.0 / 255);

        // 高斯模糊
        Mat gauss = new Mat();
        Imgproc.GaussianBlur(src, gauss, new Size(101, 101), 0);

        // 图像处理
        Mat dst = new Mat();
        Core.divide(src, gauss, dst);
        dst.convertTo(dst, CvType.CV_8UC3, 255);

        // Gamma变换
        Mat matGamma = new Mat();
        gammaCorrection(dst.clone(), matGamma, 1.5f);

        // 显示最终结果
        // HighGui.namedWindow("Source", HighGui.WINDOW_NORMAL);
        HighGui.namedWindow("dst", HighGui.WINDOW_NORMAL);

        HighGui.imshow("Source", image);
        HighGui.imshow("dst", matGamma);
        HighGui.waitKey();

        // 释放资源
        image.release();
        src.release();
        gauss.release();
        dst.release();
        matGamma.release();
    }
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值