A*算法—java代码

A*算法是Dijkstra算法的扩展,常用于高效寻路和图遍历。算法涉及搜索区域、开放列表、父节点和路径排序。路径成本通过F(n) = G + H计算,其中G是实际移动开销,H是启发函数估算的未来成本,通常使用曼哈顿距离。该算法在游戏开发等领域有广泛应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

https://blog.csdn.net/ruils/article/details/40780657
https://blog.csdn.net/hitwhylz/article/details/23089415
https://blog.csdn.net/denghecsdn/article/details/78778769
https://www.cnblogs.com/21207-iHome/p/6048969.html

A*算法原理:

  在计算机科学中,A*算法作为Dijkstra算法的扩展,因其高效性而被广泛应用于寻路及图的遍历,如星际争霸等游戏中就大量使用。在理解算法前,我们需要知道几个概念:

  • 搜索区域(The Search

  • 开放列表(Open List):我们将路径规划过程中待检测的节点存放于Open List中,而已检测过的格子则存放于Close

  • 父节点(parent):在路径规划中用于回溯的节点,开发时可考虑为双向链表结构中的父结点指针。

  • 路径排序(Path Sorting):具体往哪个节点移动由以下公式确定:F(n) = G + H。G代表的是从初始位置A沿着已生成的路径到指定待检测格子的移动开销。H指定待测格子到目标节点B的估计移动开销。

  • 启发函数(Heuristics
    Function):H为启发函数,也被认为是一种试探,由于在找到唯一路径前,我们不确定在前面会出现什么障碍物,因此用了一种计算H的算法,具体根据实际场景决定。在我们简化的模型中,H采用的是传统的曼哈顿距离(Manhattan
    Distance),也就是横纵向走的距离之和。

import java.util.ArrayList;
import java.util.List;

public class AStar {
   
   

    public static final int[][] maps = {
            {
  
  0, 0, 0, 0, 0, 0, 0, 0, 0},
            {
  
  0, 0, 0, 0, 0, 0, 0, 0, 0},
            {
  
  0, 0, 0, 0, 0, 0, 0, 0, 0},
            {
  
  0, 0, 0, 1, 0, 0, 0, 0, 0},
            {
  
  0, 0, 0, 1, 0, 0, 0, 0, 0},
            {
  
  0, 0, 0, 1, 0, 0, 0, 0, 0},
            {
  
  0, 0, 0, 1, 0, 0, 0, 0, 0},
            {
  
  
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值