- 博客(189)
- 资源 (22)
- 收藏
- 关注

原创 你真的会干数据治理吗?实操解析
已经21世纪,会不会还有人说没有数据质量管理平台,数据治理我干不了!没有元数据管理平台,数据治理干不了!没有主数据管理平台,数据治理我干不了!想想武侠中的高手,用树脂当剑同样可以剑气逼人,杀人于无形!武侠中的剑客用树枝也能杀人,是因为内力(规则)和招式(方法)已炉火纯青。数据治理同理:。
2025-05-07 20:29:33
1634

原创 百老开通知识星球啦,数据要素、数据治理等资料迅速扩散!
做数据相关工作有一些年头了,手里也积攒了几千份案例、解决方案、考试认证资料、数据要素研报等材料,形成自我的架构参考库,按TOGAF开发方法,分别形成标准信息库(Standards Information Base)、参考库(Reference Library)、架构情景库等。使得工作效率事半功倍。搞个星球,是希望跟各位分享架构参考库,希望帮助到各位!
2024-06-23 15:02:16
742

原创 数据治理工程师CDGA备考心得、时间安排、题库资源
之前做一些数据质量控制、元数据、主数据相关工作,一直忙于工作,没有去往考证的方面想,去年年底心血来潮就决定考一考,证多不压身嘛(也有部分学生向我咨询),(狗
2024-06-21 16:39:59
2066
原创 数据时代的数字企业
摘要数据治理是数字企业的核心工作,涵盖数据质量、安全、隐私和合规四个关键方面。本文系统阐述了数据治理的核心内容与实践方法:在数据质量方面,强调数据清洗、备份和校验的重要性;在数据安全方面,提出访问控制、网络隔离、数据加密等防护措施;在数据隐私方面,介绍数据脱敏、加密和审计技术;在数据合规方面,探讨合规审计和安全测试的必要性。企业需要采取系统化的治理措施,确保数据的质量与安全,推动数字化转型和业务增长。
2025-06-02 11:02:23
638
原创 数据治理的演变与AI趋势
《数据治理演进与AI趋势》摘要数据治理作为组织管理数据的系统性方法,正随着数据量激增和法规完善而日益重要。其演进呈现三大特征:分层次治理体系(企业级/部门级/项目级)多元化模式选择(集中式/分散式/联邦式)新兴趋势涌现(数据民主化、云化、伦理合规)AI技术为数据治理带来新机遇:• 通过机器学习提升数据质量监控• 赋能自助BI分析的同时保障数据安全• 结合区块链增强数据可信度
2025-06-02 10:59:21
512
原创 基于BIM和GIS集成实现CIM创建
由于城市GML的广泛使用,它集中在许多关于使用城市GML格式的文章中,以便基于BIM模型创建模型,另一方面,这种方法存在一些问题,例如丢失BIM模型的特征。根据上述文章,很明显,除了使用Infraworks和ArcGIS pro的有限数量的文章外,许多研究考虑使用城市GML和IFC格式的方法,因此,本研究论文的目的是开发一种BIM和GIS之间的集成方法,以便创建一个CIM来改善决策过程和城市规划,而无需使用城市GML和IFC, 这将为创建城市数字孪生(CDT)奠定基础,以达到创建智慧城市的终点。
2025-06-02 10:54:49
550
原创 云计算数据治理
文章摘要:云计算在推动行业创新的同时,也面临数据治理挑战。客户对云服务商处理敏感数据的能力存在信任危机,主要担忧包括数据泄露风险、访问权限不透明及供应链复杂性带来的安全隐患。研究提出基于问责制的治理框架,通过可观察性、可验证性等七大属性,结合组织实践和技术机制,解决云环境中的合规性问题。该模型强调在数据保护、法律遵从和风险管理之间建立平衡,为多租户架构、数据复制等云特性引发的治理难题提供系统性解决方案,旨在增强云生态系统可信度并促进其广泛采用。(149字)
2025-06-02 10:32:57
1176
原创 通过多级元数据管理实施数据治理
数字宇宙中可用的数据量正在以指数级的速度增长,并且只会随着物联网等新技术的兴起而继续增长。如今,由于业务变化的速度,数据比以往任何时候都更加重要。在过去十年中,随着主数据管理(MDM)系统的兴起和使用,这一点得到了强调。MDM为数据增加了一个新的维度,专注于以面向业务的方式建立异构数据库和应用程序的集成和互操作性。最近的研究表明,能够有效利用和分析其数据的组织优于竞争对手。为了积极使用组织内外可用的数据,组织必须找到一种方法来主动且充分地使用元数据标记数据。
2025-06-02 10:28:13
959
原创 一种基于性能建模的HADOOP配置调优策略
为了便于性能模型的构建和评估,本文首先设计了一套基于MapReduce流程的性能获取工具,该工具具有轻量级、非侵入性的特点,可以深入容器中采集应用程序各个阶段的运行情况。为了让用户在不了解底层细节的情况下实现精确的参数调优,需要对Hadoop参数与MapReduce应用性能之间的关系进行建模,以发现最优的配置参数组合。针对Hadoop配置参数空间巨大、难以进行有效调优的问题,本文提出了一种基于集成学习建模的Hadoop配置参数调优的方法H-Tune,可以显着提高MapReduce应用程序的性能。
2025-06-02 10:24:43
925
原创 洋流的实时原位预测
基于区域物理的预测模型提供了有效的预测,但对于AUV导航所需的实时预测而言,计算成本太高。虽然车辆传感器可以测量电流的空间演变,但时间预测仍然是一个悬而未决的问题,因为现有的具有实时功能的数据驱动模型仅在数据用于开发模型的位置显示有效。简单地说,神经网络是一种基于矩阵的算法,用于逼近一个过程,在本文的范围内,该过程被定义为以时间序列作为输入和输出的黑盒函数。为了更好地理解Transformer和LSTM的预测能力,我们在图5中显示了作为时间函数的速度和方向以35英尺深度处CAB1401站的速度傅立叶变换。
2025-06-02 10:20:16
946
原创 海底三维可视化平台
本文提出了一种基于"剖面-钻探"模型的3D海底可视化平台,通过整合多源海洋数据(测深、地震剖面、钻井数据等),采用克里金插值、Delaunay三角剖分和GPU渲染等技术,构建了海底地层的高精度三维模型。该系统实现了海底地质结构的交互式可视化分析,支持PC端和移动端应用。研究表明,该方法能有效融合直接采样数据与间接勘探数据,为海洋科学研究提供了直观的分析工具,但在动态数据可视化和特殊地质现象表达等方面仍需进一步研究。
2025-06-02 10:13:25
632
原创 基于遥感图像深度学习的海洋测深
针对传统海洋测深技术成本高、实施困难的问题,本研究提出一种利用深度学习从遥感图像反演水深的新方法。通过生成包含随机海底地形(40-100米深度)和波浪条件(有效波高0.5-6米,周期5-25秒)的合成数据集(1500组剖面,120万张图像),构建改进的U-Net模型进行水深重建。结果表明,该方法在70米深度范围内误差约3米,单次处理可重建4平方公里海域(10米分辨率)。虽然目前适用于直线海岸线简单地形,但证明了深度学习在卫星测深中的潜力,为大规模海岸监测提供了新思路
2025-06-02 10:08:46
863
原创 关于海洋数据上云的一些机遇与挑战
海洋观测技术的革新以及数据模型的改进意味着海洋大数据时代的到来。海量海洋观测数据的管理和预测模型的运行对计算要求都很高,云计算的兴起提供了重新思考如何管理海洋数据、运行模型的新思路。海洋数据上云面临已有数据、技术、工作流迁移的挑战,以及如何保质保量将已有功能转换到云端供用户使用。
2025-06-02 10:01:39
548
原创 基于AIS的海洋观测应用
船舶自动识别系统(Automatic Identification System, 简称AIS系统),由岸基(基站)设施和船载设备共同组成,是一种新型的集网络技术、现代通讯技术、计算机技术、电子信息显示技术为一体的数字助航系统和设备。船舶自动识别系统(AIS)诞生于20世纪90年代,由舰船、飞机之敌我识别器发展而成。
2025-06-02 09:54:55
874
原创 DMBOK对比知识点整理(4)
数据质量维度包括准确性、完备性、一致性、完整性、合理性、及时性、唯一性和有效性8个核心指标,分别衡量数据的真实程度、完整程度、逻辑相符程度等。OLTP与OLAP在应用场景、数据特征和用户角色方面存在显著差异。BI主要进行描述性分析,而AI更侧重预测性和规范性分析。数据仓库存储结构化历史数据,数据湖则容纳各类原始数据,支持更灵活的分析场景。这些概念构成了企业数据管理的基础框架,为不同业务需求提供针对性解决方案。
2025-05-29 22:09:24
97
原创 DMBOK对比知识点对比(3)
数据仓库建设方法主要分为Inmon和Kimball两种:Inmon采用自上而下的3NF关系模型,建设难度大但维护容易;Kimball采用自下而上的星型维度建模,开发快速但维护复杂。数据库架构包括集中式、分布式、云数据库等类型,数据模型涵盖关系型、NoSQL、时空数据库等。ACID与BASE的区别在于前者强调强一致性,后者追求高可用性。数据治理模式可分为集中式、分布式和联邦式。受控词表分类法包含扁平、层次、网状等多种结构,用于信息组织管理。这些内容涵盖了数据管理领域的关键概念和方法论。
2025-05-29 19:16:58
152
原创 DMBOK对比知识点对比(2)
摘要:数据处理需遵循伦理原则,避免时机选择、可视化误导、定义模糊等风险。数据安全涉及脆弱性、威胁、风险分类(CRD/HRD/MRD)及加密、脱敏等技术,组织需设置CISO并实施4A安全过程。元数据分为业务元数据(定义、规则等)、技术元数据(数据库细节、ETL等)和操作元数据(日志、调度等),支撑数据治理与安全。
2025-05-29 19:12:41
70
原创 DMBOK对比知识点对比(1)
本文系统梳理了数据治理与管理框架的核心内容,主要涵盖三部分:数据治理全流程(CDGP),包括规划、架构、建模、安全、主数据管理等14个章节,详细列举了各阶段工具和方法论;数据模型体系,分类说明概念/逻辑/物理模型等组件及6种建模方法(关系型、维度等);数据库技术生态,对比分析了关系型、多维、NoSQL等5类数据库及其代表产品(MySQL、MongoDB等)。整体呈现了从治理策略到技术落地的完整知识图谱,适用于企业数字化转型参考。
2025-05-29 19:09:06
71
原创 DMBOK的2.0R与2.0全面对比分析报告
DMBOK(Data Management Body of Knowledge)作为数据管理领域的权威框架,自2009年首次发布以来经历了多次迭代。其中2.0版本标志着数据管理从技术导向转向业务价值驱动,而最新的2.0修订版(DMBOK 2.0R)则在此基础上进一步强化了实践指导性。
2025-05-25 10:26:37
136
原创 最新CDGP单选题(第三章)补充-1
本文围绕数据治理的常见问题展开解析,主要包含以下要点:1)数据治理的目标包括改进流程、降低风险,但业务绩效提升是间接效果;2)数据治理实施需组织变革管理,分阶段推进,并嵌入企业运营;3)关键组织包括指导委员会、办公室和管理团队,其中业务术语表是核心工具;4)治理指标应关注目标实现、沟通效果等,而非风险提高;5)数据资产估值可采用替换成本、风险成本等方法,而非市场估值。文章通过70道选择题解析,系统阐述了数据治理的实施要点和常见误区。
2025-05-25 10:09:34
36
原创 最新CDGP简答题回答框架
元数据是数据的数据,元数据是数据治理的主要对象,元数据分为业务元数据、技术元数据、管理元数据据等,为了便于管理和落地,需要对业务系统的各种数据库、数据迁移工具或存储过程、数据仓库、报表工具等元数据进行采集、解析、管理、应用等,但由于历史或管理问题,导致了元数据的质量较差,可读性不高,解析成功率低,管理难度大等问题。
2025-05-25 09:51:30
34
原创 最新CDGP多选题题库(三)
本文摘要:本文围绕数据管理相关知识展开,包含数据资产估值方法(如风险成本、替换成本等)、数据管理成熟度评估模型(如DCAM、DMM等)、数据治理功能领域(如元数据、数据安全等)以及热门技术(如数据中台、隐私计算等)。同时涉及数据架构组成(概念模型、数据流设计等)、大数据算法(如聚类、神经网络等)及数据仓库与数据湖的区别。此外,还探讨了信创领域、数字化转型组织架构及DCMM与DAMA标准的差异。通过多选题目解析,系统梳理了数据管理核心概念与实践要点。(150字)
2025-05-25 09:43:28
261
原创 牛马工作小程序(薪资实时计算、工作日倒计时)
本文介绍了一个为上班族设计的“工作日倒计时与薪酬计算器”网页工具。该工具以绿色UI设计为主,提供实时时间、距离年底的工作日、今日已工作时间和已挣工资等信息。用户可以根据自己的工作时间(默认9:00-19:00)和日薪(默认500元)进行个性化设置,并实时更新计算结果。工具通过JavaScript实现动态数据更新,帮助用户在炎热的天气中保持工作动力,同时清晰了解自己的工作时间与收入情况。
2025-05-19 15:42:59
212
原创 最新CDGP多选题题库(一)
本文主要围绕《DMBOK2》中的数据治理、数据架构、数据科学、数据湖、数据管理成熟度评估等主题展开,通过多选题的形式考察了相关知识点
2025-05-12 14:06:07
154
原创 最新CDGP多选题题库(二)
本文通过一系列多选题,探讨了数据管理、数据治理、数据架构等领域的核心概念和实践。主要内容包括:主数据管理和参考数据管理的挑战与解决方案
2025-05-12 14:03:52
36
原创 最新CDGP论述题
1、 [简答] 数据质量是数据管理的主要目的之一,提升数据质量涉及到很多方面,其 中包括组 织职责、人员匹配、领导重视程度、体系搭建、流程设置、绩效考核 等。但是在这些 事项中,问题数据解决和绩效考核至关重要,请您根据您所在 企业的实际情况, a) 设计问题数据解决解方案以及为了确保数据质 量工作的顺利开展,设计相关部门的绩效考核体系2、 [简答]建模题 假如需要设计一个电影院的在线订票系统,需要你根据实际的订票场景设计出数据模型,该系统中至少要包含如下功能。用户可以通过微信、手
2025-05-12 13:23:37
105
原创 CDGP历次主观题真题回忆
本文主要围绕企业数据管理、数据安全、数据质量、元数据管理、主数据管理、数据建模、数据仓库、数据治理、数据成熟度评估等多个方面展开论述。文章详细探讨了如何设计企业的数据安全体系、管理数据质量、理解大数据的特性、进行数据科学活动、评估数据成熟度、制定有效的数据质量指标、建立数据标准和标准化体系等关键问题。此外,文章还涉及元宇宙中的数据模型、数据质量原因及解决措施、元数据治理、主数据管理、数据安全需求与过程、数据管理生命周期等内容。
2025-05-10 19:03:01
132
原创 CDGP数据治理主观题评分标准与得分策略
1)准确理解题目中所描述的业务逻辑和需求得[1分]2)正确使用模型设计方法,使用信息工程、信息建模集成定义、巴克符号、陈氏符号等其中一种得[1分]3)正确设计实体和属性,题目中涉及的实体数量为25-30个,10个以内得[2分],10-20个得[3分],25个以上得[4分]4)基于业务逻辑准确设计实体与实体之间的关系,10个以内实体关系线正确设计得[1分],10-20个实体关系线正确设计得[2分],25个以上实体关系线正确设计得[3分]
2025-05-10 18:29:53
224
原创 CDGP考点必背复习
本文摘要了CDGP考试大纲中的关键内容,涵盖了数据管理、数据治理、数据架构、数据建模与设计、数据安全、主数据与参考数据、数据仓库与商业智能、元数据管理、数据质量、大数据和数据科学、数据管理成熟度评估等多个章节。每个章节都详细列出了业务驱动因素、基本概念、活动、工具和技术、评估指标等核心考点。特别强调了数据治理、数据安全、主数据管理、数据质量等章节的重要性,并提供了记忆口诀和关键概念的解释,帮助考生系统复习和掌握考试重点。
2025-05-10 17:54:06
28
原创 最新CDGP单选题(第一章)补充
数据管理是业务需求的核心部分,涉及数据的收集、存储、处理、分析和利用,以支持业务目标和决策。数据管理需求包括数据质量管理、元数据管理以及信息技术决策的驱动。数据与信息的关系中,数据是信息的原材料,信息是数据的解释和含义,两者需要被管理,但不可互换。数据管理战略规划的可交付成果包括数据管理章程、范围声明和实施路线图,而数据管理的使命则作为指导原则。数据管理需要企业级视角,跨职能合作,领导者承担责任,并管理与数据相关的风险。数据生命周期管理关注数据的创建、使用和质量,不同类型的数据具有不同的生命周期特征。
2025-05-09 18:39:29
91
原创 最新CDGP单选题(第四章)补充
本文主要探讨了企业数据架构的多个方面,包括主题域识别准则、架构师职责、企业数据架构路线图、数据架构的实施策略、数据架构元素、架构度量指标、数据架构目标、DevOps方法、数据架构角色、数据架构构件、企业架构框架、数据架构的基本组成部分、企业数据模型创建、数据架构描述、企业数据架构的创建依赖、组织接受并实施数据架构的能力、架构类项目的风险、数据架构的主要成果、企业模型设计、图标使用规范、建立企业数据架构活动、数据架构目标、实施数据架构的工作内容、企业架构的组成部分、架构设计生命周期、企业数据模型描述、图标使用
2025-05-08 22:01:53
114
原创 最新CDGP单选题(第十五章)
本文主要介绍了数据管理成熟度评估的相关知识,包括数据管理成熟度的不同级别特征、评估模型、评估方法以及评估过程中的注意事项。数据管理成熟度通常分为0级到5级,每个级别有明确的特征和评估标准。评估模型如CMMI的DMM模型是常用的框架,评估过程中需与相关方保持充分沟通,确保核心员工的参与。评估结果包括评级、差距分析和改进建议,帮助组织制定改进计划。此外,文章还强调了评估的业务驱动因素,如监管、数据治理、组织变更等,并指出评估的目标是提高数据管理能力,促进组织的数据治理和协作。
2025-05-08 21:41:26
40
原创 最新CDGP单选题(第十四章)
本文摘要:本文通过20道单选题,涵盖了数据科学、大数据、数据湖、机器学习等多个领域的基础知识。主要内容包括数据科学的分析模式(预测性分析和规范性分析)、大数据的3V与6V概念、数据湖的功能与风险、机器学习的类型(监督学习、无监督学习、强化学习)、数据挖掘的应用、MapReduce模型的步骤、数据仓库与数据科学的区别、数据科学的工作流程等。这些题目旨在帮助读者理解数据科学的核心概念、工具和应用场景,并掌握大数据处理与分析的基本方法。
2025-05-08 21:31:35
40
原创 最新CDGP单选题(第四章)
本文主要围绕企业数据架构的相关知识展开,涉及单选题36道,涵盖了企业数据模型、数据架构设计、数据流设计、数据架构师职责、数据架构治理等多个方面。文章通过选择题的形式,详细解析了企业数据架构的定义、目标、职责、工具、治理活动
2025-05-08 21:21:30
66
原创 最新CDGP单选题(第三章)
本文通过41道单选题,详细探讨了数据治理的各个方面,包括其范围、驱动因素、与IT治理的区别、运营模式、度量指标、工具和方法等。数据治理的核心在于将数据作为资产进行管理,其项目通常包括战略、制度、标准和质量、监督、合规和问题管理等内容。数据治理的驱动因素主要聚焦于减少风险或改进流程,而其运营模式则包括集中式、分布式和联邦式。此外,数据治理的度量指标包括价值、有效性和可持续性,而工具和方法则包括数据治理计分卡、业务术语表等。数据治理需要业务和技术共同驱动,其目标是通过定义和实施数据管理的原则、政策、程序等,提升
2025-05-08 21:11:25
46
原创 最新CDGP单选题(第一章)
本文主要探讨了数据管理的原则、框架及其对数据生命周期的影响。数据管理需要平衡战略和运营需求,遵循一系列原则,如数据质量管理、元数据管理、跨职能协作等。数据管理框架包括DAMA车轮图、环境因素六边形图和知识领域语境关系图。数据生命周期管理强调创建和使用、数据质量管理和元数据管理的重要性。此外,数据管理需要企业级视角,领导层承担责任,并纳入与数据相关的风险。数据管理战略应遵循SMART原则,确保数据管理活动符合业务需求。
2025-05-08 20:59:36
138
软件成本估算、工作量估算学习材料
2023-03-27
2023年系统集成项目管理工程师考试必备
2023-03-26
TOGAF 9.2企业架构自学整理材料
2023-03-26
数据治理CDGA学习资料(新)
2023-03-28
数据治理之主数据管理学习材料
2023-03-18
数据治理之元数据管理学习材料
2023-03-18
protoc.exe 21.12
2023-02-01
TSCTA 007-2021 工业大数据平台 数据运行监控 技术规范
2022-11-10
TSCTA 006-2021 工业大数据平台 数据建模 技术规范
2022-11-10
TSCTA 005-2021 工业大数据平台 数据治理 技术规范
2022-11-10
含两个文件hive-jdbc-3.1.2-standalone.jar和apache-hive-3.1.2-bin.tar.gz
2022-08-14
mysql-connector-java-8.0.22.jar
2022-08-14
geotools.zip
2020-07-03
swingx-wx.zip
2020-07-03
mappanel.zip
2020-07-03
数据安全100+资源合集,包含实施方案、专题研究等,比较全面的数据安全资料
2024-06-30
数据治理体系建设与数据资产路线图规划
2023-09-15
可信工业数据流通 关键技术研究报告
2023-09-15
数据资产评估指导意见2023
2023-09-15
DAMA数据管理各职能总结
2023-09-15
某大型集团数字化转型方案
2023-09-13
某大型制造企业数字化转型规划方案
2023-09-13
2023城管数字化转型整体解决方案
2023-09-13
知识图谱与大模型融合实践研究报告2023.pdf
2023-09-13
航空行业数字化转型解决方案
2023-09-13
2023智慧能源数字化转型解决方案
2023-09-13
农业数字化转型方案V3.0
2023-09-13
景区数字化转型方案V3.0
2023-09-13
政务数据治理重难点分析、实施步骤
2023-09-12
《数据治理-工业企业数字化转型之道》PPT(数据治理比较全面的体系介绍)(蔡老师)
2023-09-12
数据治理CDGP学习材料(新)
2023-06-21
MyCat水平分表如何查询所有节点的各个表的总行数和空间大小
2022-10-26
TA创建的收藏夹 TA关注的收藏夹
TA关注的人