
深度学习从入门到精通
本栏目收集各类机器学习,深度学习资源,从0基础开始学习深度学习、机器学习。秉承免费共享,互帮互助的思想,欢迎有志之士共同学习!
Will-kkc
学习是为了更好的生存~
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
稀疏自编码器符号一览表
下面是我们在推导sparse autoencoder时使用的符号一览表: 符号 含义 训练样本的输入特征,. 输出值/目标值. 这里 可以是向量. 在autoencoder中,. 第 个训练样本 输入为 时的假设输出,其中包含参数 . 该输出应当与目标值 具有相同的维数. 连接第 层 单元和第 层 单元的参数. ...转载 2019-02-16 21:25:32 · 629 阅读 · 0 评论 -
可视化自编码器训练结果
训练完(稀疏)自编码器,我们还想把这自编码器学到的函数可视化出来,好弄明白它到底学到了什么。我们以在10×10图像(即n=100)上训练自编码器为例。在该自编码器中,每个隐藏单元i对如下关于输入的函数进行计算: 我们将要可视化的函数,就是上面这个以2D图像为输入、并由隐藏单元i计算出来的函数。它是依赖于参数的(暂时忽略偏置项bi)。需要注意的是,可看作输入的非线性特征。不过还有个问题:什么样...转载 2019-02-16 21:24:03 · 681 阅读 · 0 评论 -
自编码算法与稀疏性
目前为止,我们已经讨论了神经网络在有监督学习中的应用。在有监督学习中,训练样本是有类别标签的。现在假设我们只有一个没有带类别标签的训练样本集合 ,其中 。自编码神经网络是一种无监督学习算法,它使用了反向传播算法,并让目标值等于输入值,比如 。下图是一个自编码神经网络的示例。 自编码神经网络尝试学习一个 的函数。换句话说,它尝试逼近一个恒等函数,从而使得输出 接近于输入 。恒...转载 2019-02-16 21:23:11 · 409 阅读 · 0 评论 -
梯度检验与高级优化
梯度检验与高级优化 目录 梯度检验与高级优化 梯度检验 中英文对照 梯度检验 众所周知,反向传播算法很难调试得到正确结果,尤其是当实现程序存在很多难于发现的bug时。举例来说,索引的缺位错误(off-by-one error)会导致只有部分层的权重得到训练,再比如忘记计算偏置项。这些错误会使你得到一个看似十分合理的结果(但实际上比正确代码的结果要差)。因此,但从计算结果上来看,我们很难...转载 2019-02-16 21:12:26 · 300 阅读 · 0 评论 -
反向传导算法
反向传导算法 目录 反向传导算法 推导流程 中英文对照 推导流程 假设我们有一个固定样本集 ,它包含 个样例。我们可以用批量梯度下降法来求解神经网络。具体来讲,对于单个样例 ,其代价函数为: 这是一个(二分之一的)方差代价函数。给定一个包含 个样例的数据集,我们可以定义整体代价函数为: 以上关于定义中的第一项是一个均方差项。第二项是一个规则化项(也叫权重衰减项),其目的...转载 2019-02-16 20:33:44 · 390 阅读 · 0 评论 -
神经网络
概述 目录 概述 概述 神经网络模型 中英文对照 概述 以监督学习为例,假设我们有训练样本集 ,那么神经网络算法能够提供一种复杂且非线性的假设模型 ,它具有参数 ,可以以此参数来拟合我们的数据。 为了描述神经网络,我们先从最简单的神经网络讲起,这个神经网络仅由一个“神经元”构成,以下即是这个“神经元”的图示: 这个“神经元”是一个以 及截距 为输入值的运算单元,...转载 2019-02-16 19:07:49 · 367 阅读 · 0 评论