ArcGIS中分区计算的问题

本文介绍了一种在ArcGIS中实现矢量数据对矢量数据分区统计的新方法,通过TablulateIntersection和SummaryStatisticsTools工具组合使用,解决了传统SpatialAnalysisTools工具在处理矢量数据时存在的局限性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

ArcGIS本身就提供了分区计算的工具,如图:
这里写图片描述这里写图片描述
但是存在一个问题,就是Spatial Analysis Tools工具主要支持的是矢量或者栅格对于栅格数据的分区统计,在工具对话框中都要求提供赋值栅格数据。这样的话就存在一些弊端:
1:某些时候我们需要的是矢量数据对矢量数据的分区统计,
2:如果进行矢栅转换,其中就存在像元大小确定和最后面积计算误差的问题,如果把像元确定非常小,会加重计算量和数据量,不是很明智。
3:ArcGIS规定栅格数据的属性表中数值必须是整型,否则不能构建属性表,如果统计的是浮点值数据,进行取整还需要赋值栅格和更改像元深度,比较麻烦。

对此,笔者整理了一种新的方法用来支持矢量之间的分区统计。以一个乡镇shp文件来计算图中每个乡镇点值的均值为例:
首先,ArcGIS提供了丰富的工具,关键在于发现。笔者先利用Tablulate Intersection,如图:
这里写图片描述
这个类似于Intersection,即把每一个点值交互到面要素中去,也可以使用Intersection,因为笔者最后需要的是表格,所以选择这个工具。

然后,利用Summary Statistics Tools对面要素进行汇总,类似于Excel中的汇总计算,统计类型支持多样化,可以查看Tool Help文档有中详细说明。
这里写图片描述
最后就可以得到每一个面要素所对应点值的统计数据,如图是汇总统计前后的对比:
这里写图片描述
这里写图片描述

结语:ArcGIS中提供多种多样的工具,如果我们对于工具足够熟悉,可以通过使用工具组合来完成很多原本很麻烦的任务。但是ArcGIS10.4提供了接近1000个工具,对于笔者而言,熟悉这么多工具是一件非常艰难的事情,也只能熟悉最基础的工具箱,在学习和研究中不断摸索。如果有新发现,也会在后续博客中持续跟进。

### 关于 ArcGIS 中相交分区的操作方法 在 ArcGIS 中,相交分区通常涉及两个主要方面:一是 **矢量数据的相交操作**,二是 **栅格数据的分区统计**。以下是具体的方法说明: #### 矢量数据的相交操作 对于矢量数据(点、线、面),可以通过 `Intersect` 工具实现相交操作。该工具位于 `Analysis Tools → Overlay → Intersect` 菜单下。 - 打开 `Intersect` 对话框后,在 `Input Features` 参数中选择参与相交运算的多个图层。 - 设置输出路径和文件名。 - 如果需要保留原始属性字段,则勾选 `Join Attributes` 的默认选项 `ALL`[^4]。 执行完成后,生成的新图层会表示输入图层之间的公共部分,并继承其属性信息。 #### 栅格数据的分区统计 如果目标是对某个区域内的栅格值进行统计分析,可利用 `Zonal Statistics as Table` 或者 `Tabulate Area` 工具完成此任务。这些工具都属于 Spatial Analyst 扩展模块的一部分: - 使用 `Zonal Statistics as Table` 可以基于矢量区域提取对应范围内的栅格统计数据(如最大值、最小值、平均值等)。设置时需指定 `Zone Field` 和待处理的栅格数据源[^3]。 - 若希望了解不同类别覆盖面积的比例关系,则更适合选用 `Tabulate Area` 方法来获取详细的交叉矩阵报表形式的结果。 另外值得注意的是当涉及到地理坐标系统的转换问题时建议先将数据投影到适合本地测量单位的平面直角坐标系下去做进一步精确计算以免因地球曲率影响造成误差累积现象发生[^2]。 ```python import arcpy # 定义工作空间 arcpy.env.workspace = r"C:\path\to\your\data" # 运行 Intersect 工具 input_features = ["layer1.shp", "layer2.shp"] output_intersect_feature = "intersect_result.shp" arcpy.Intersect_analysis(input_features, output_intersect_feature) print(f"Intersection result saved at {output_intersect_feature}") ``` 以上脚本展示了如何调用 Python API 实现自动化批量处理流程简化重复劳动强度提高效率的同时也便于后续扩展定制化需求场景的应用开发实践探索尝试不断优化改进直至满足最终业务逻辑要求为止。 ---
评论 14
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值