【pandas】(二)读写数据

目录

一、读数据

1.1 pandas.read_csv

(1)filepath_or_buffer : 路径 URL 可以是http, ftp, s3, 和 file.

(2)sep: 指定分割符,默认是’,’

(3)delimiter: 同sep

(4)header: 指定第几行作为列名(忽略注解行),如果没有指定列名,默认header=0; 如果指定了列名header=None

(5)names 指定列名,如果文件中不包含header的行,应该显性表示header=None。当header=0时,是将原始列名替换。

(6)index_col: 默认为None 用列名作为DataFrame的行标签,如果给出序列,则使用MultiIndex(复合索引)。                          如果读取某文件,该文件每行末尾都有带分隔符,考虑使用index_col=False使panadas不用第一列作为行的名称。

(7)usecols: 默认None 可以使用列序列也可以使用列名,如 [0, 1, 2] or [‘foo’, ‘bar’, ‘baz’]

(8)prefix:默认为none, 当header =None 或者没有header的时候有效,例如’x’ 列名效果 X0, X1, …

(9)skiprows: list-like or integer or callable, default None 忽略某几行或者从开始算起的几行

(10)skipfooter: 从底端算起的几行,不支持C引擎

(11)nrows: int 读取的行数 

二、写数据

2.1 pandas.to_csv

(1)path_or_buf:字符串,放文件名、相对路径、文件流等

(2)sep:字符串,分隔符,跟read_csv()的一个意思

(3)na_rep:字符串,将NaN转换为特定值 

(4)columns:列表,指定哪些列写进去 

(5)header:默认header=0,如果没有表头,设置header=None,表示列名不写入csv

(6)index:关于索引的,默认True,写入索引 


一、读数据

以kaggle竞赛,Titanic数据为例

1.1 pandas.read_csv

pandas.read_csv(filepath_or_buffer, sep=', ', delimiter=None, header='infer', names=None, index_col=None, usecols=None, squeeze=False, prefix=None, mangle_dupe_cols=True, dtype=None, engine=None, converters=None, true_values=None, false_values=None, skipinitialspace=False, skiprows=None, nrows=None, na_values=None, keep_default_na=True, na_filter=True, verbose=False, skip_blank_lines=True, parse_dates=False, infer_datetime_format=False, keep_date_col=False, date_parser=None, dayfirst=False, iterator=False, chunksize=None, compression='infer', thousands=None, decimal=b'.', lineterminator=None, quotechar='"', quoting=0, escapechar=None, comment=None, encoding=None, dialect=None, tupleize_cols=None, error_bad_lines=True, warn_bad_lines=True, skipfooter=0, doublequote=True, delim_whitespace=False, low_memory=True, memory_map=False, float_precision=None)

参考博文:https://blog.csdn.net/weixin_39175124/article/details/79434022

  • (1)filepath_or_buffer : 路径 URL 可以是http, ftp, s3, 和 file.

  • (2)sep: 指定分割符,默认是’,’

  • (3)delimiter: 同sep

  • (4)header: 指定第几行作为列名(忽略注解行),如果没有指定列名,默认header=0; 如果指定了列名header=None

  • (5)names 指定列名,如果文件中不包含header的行,应该显性表示header=None。当header=0时,是将原始列名替换。

注:列名默认第一行(默认不是没有)

  • (6)index_col: 默认为None 用列名作为DataFrame的行标签,如果给出序列,则使用MultiIndex(复合索引)。                         

如果读取某文件,该文件每行末尾都有带分隔符,考虑使用index_col=False使panadas不用第一列作为行的名称。

注:行索引,默认没有(默认不是第一列)

  • (7)usecols: 默认None 可以使用列序列也可以使用列名,如 [0, 1, 2] or [‘foo’, ‘bar’, ‘baz’]

  • (8)prefix:默认为none, 当header =None 或者没有header的时候有效,例如’x’ 列名效果 X0, X1, …

  • (9)skiprows: list-like or integer or callable, default None 忽略某几行或者从开始算起的几行

注:从头开始,支持列表参数

  • (10)skipfooter: 从底端算起的几行,不支持C引擎

注:从尾端,不支持列表参数

  • (11)nrows: int 读取的行数 

二、写数据

2.1 pandas.to_csv

pandas.to_csv(path_or_buf,sep,na_rep,columns,header,index)

  • (1)path_or_buf:字符串,放文件名、相对路径、文件流等

注:默认将行索引和列名全部写入csv文件 

  • (2)sep:字符串,分隔符,跟read_csv()的一个意思

  • (3)na_rep:字符串,将NaN转换为特定值 

  • (4)columns:列表,指定哪些列写进去 

  • (5)header:默认header=0,如果没有表头,设置header=None,表示列名不写入csv

 

  • (6)index:关于索引的,默认True,写入索引 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值