vins-fusion 融合rtk原理

该博客介绍了vins-fusion融合rtk的原理,通过优化方式结合vio的短期精度和rtk的长期准确性。然而,由于未固定rtk参考帧,当rtk出现跳变时,融合结果会受到影响。作者探讨了这种设计在面对rtk不连续性时的局限性,并指出需要解决rtk跳变导致的定位不稳定问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

vins-fusion融合rtk原理:
使用优化的方式融合,假设融合后的位姿是fusion_T[n], vio输出的位姿是vio_T[n],rtk输出的位姿是rtk_T(只有最后一帧)那么
fusion_T的初值是fusion_T[n] = fusion_T[n-1] * (vio_T[n-1].inverse()*vio_T[n])
两个观测 一个是rtk:
残差就是 fusion_T[n] - rtk_T
一个是vio的
残差是 fusion_T[i-1].inverse()*fusion_T[i] - vio_T[i-1].inverse()*vio_T[i]
注意这个参数,是vio两帧之间delta 和 fusion两帧之间delta相减,旨在把fusion_T两帧之间的距离调的和vio一样。

因此结果就是,比如5帧数据,它们之间的联系不会改变(与vio相同),但是整体就会跳到最后一帧和rtk重合。
在这里插入图片描述
作者就是基于vio的短期内是非常准的,rtk的绝对位置是非常准的这种思想设计的。但这种设计无法适应rtk突然发生跳变的情况,在实际测试中rtk的输出并不光滑,而且偶尔会发生跳变,因为我们没有固定哪一帧,这种思想会导致fusion也会跟着跳。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值