如何实现图像搜索,文搜图,图搜图,CLIP+faiss向量数据库实现图像高效搜索
这是AIGC的时代,各种GPT大模型生成文本,还有多模态图文并茂大模型,
以及stable diffusion和stable video diffusion 图像生成视频生成等新模型,
层出不穷,如何生成一个图文并貌的文章,怎么在合适的段落加入图像,图像用什么方式获取,
图像可以使用搜索的形式获取,也可以使用stable diffusion生成
今天说说怎么使用搜索的形式获取,这种方式更高效,节省算力,更容易落地
clip模型,详细可以查看知乎
https://zhuanlan.zhihu.com/p/511460120
或论文https://arxiv.org/pdf/2103.00020.pdf
什么是faiss数据库
Faiss的全称是Facebook AI Similarity Search,是FaceBook的AI团队针对大规模相似度检索问题开发的一个工具,使用C++编写,有python接口,对10亿量级的索引可以做到毫秒级检索的性能。
简单来说,Faiss的工作,就是把我们自己的候选向量集封装成一个index数据库,它可以加速我们检索相似向量TopK的过程,其中有些索引还支持GPU构建,可谓是强上加强。
https://engineering.fb.com/2017/03/29/data-infrastructure/faiss-a-library-for-efficient-similarity-search/
1.huggingface下载clip模型,默认是英文版,也有中文版,英文版的效果会更好些
英文版
from PIL import Image
import requests
from transformers import CLIPProcessor, CLIPModel
model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32")
processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32")
# url = "http://images.cocodataset.org/val2017/000000039769.jpg"
# image = Image.open(requests.get(url, stream=True).raw)
# inputs = processor(text=["a photo of