生成对抗网络(GAN)与深度生成模型实战

1. 生成模型基础与GAN原理

1.1 生成模型概览

生成模型是深度学习中的重要分支,主要分为以下几类:

  1. ​变分自编码器(VAE)​​:基于概率图模型的生成方法
  2. ​生成对抗网络(GAN)​​:通过对抗训练学习数据分布
  3. ​自回归模型​​:PixelCNN、WaveNet等
  4. ​流模型(Flow-based Models)​​:基于可逆变换的精确密度估计
  5. ​扩散模型(Diffusion Models)​​:最新兴起的生成方法

1.2 GAN核心思想

GAN由生成器(Generator)和判别器(Discriminator)组成:

# 生成器网络结构示例
class Generator(nn.Module):
    def __init__(self, latent_dim, img_shape):
        super().__init__()
        self.img_shape = img_shape
        
        def block(in_feat, out_feat, normalize=True):
            layers = [nn.Linear(in_feat, out_feat)]
            if normalize:
                layers.ap
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

软考和人工智能学堂

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值