引言:从RNN到Transformer的范式转移
2017年,Google Brain团队发表的论文《Attention Is All You Need》彻底改变了机器翻译的格局。Transformer架构摒弃了传统的循环神经网络(RNN),完全基于注意力机制构建,不仅在翻译质量上实现了飞跃,还大幅提升了训练效率。
本篇将深入解析Transformer的核心创新——自注意力机制(Self-Attention),并完整实现一个基于Transformer的神经机器翻译系统。我们将通过对比实验展示Transformer相比传统Seq2Seq模型的优势,并探讨其在长序列处理上的独特价值。
Transformer架构全景图
Transformer由编码器和解码器堆叠而成,其核心组件包括:
- 多头自注意力机制(Multi-Head Attention)
- 位置前馈网络(Position-wise Feed Forward)
- 残差连接与层归一化(Residual Connection & Layer Normalization)
- 位置编码(Positional Encoding)