深度探索:Transformer架构革命与自注意力机制(第二篇)

引言:从RNN到Transformer的范式转移

2017年,Google Brain团队发表的论文《Attention Is All You Need》彻底改变了机器翻译的格局。Transformer架构摒弃了传统的循环神经网络(RNN),完全基于注意力机制构建,不仅在翻译质量上实现了飞跃,还大幅提升了训练效率。

本篇将深入解析Transformer的核心创新——自注意力机制(Self-Attention),并完整实现一个基于Transformer的神经机器翻译系统。我们将通过对比实验展示Transformer相比传统Seq2Seq模型的优势,并探讨其在长序列处理上的独特价值。

Transformer架构全景图

Transformer由编码器和解码器堆叠而成,其核心组件包括:

  1. 多头自注意力机制(Multi-Head Attention)
  2. 位置前馈网络(Position-wise Feed Forward)
  3. 残差连接与层归一化(Residual Connection & Layer Normalization)
  4. 位置编码(Positional Encoding)

Transformer架构图


                
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

软考和人工智能学堂

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值