
基本概念
小麦粒
我的人生,我做主
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
CNN tensorflow keras基本概念 — 垃圾分类项目
神经网络基本概念,以垃圾分类为列一、简单概念二、为什么用激活函数2.1 sigmoid2.2 Tanh函数2.3 ReLUsoftmax函数激活函数的如何选择三、垃圾分类代码垃圾分类数据集链接:https://pan.baidu.com/s/1a5wVYRPLOY4fI0SF-rTYlg提取码:u4lc一、简单概念1、stride :表示卷积的步长;2、fsize:表示卷积层滤波器的大...原创 2019-07-22 21:27:30 · 10587 阅读 · 3 评论 -
核函数和激活函数和异常检测和聚类(outlier detection)
有人说核函数与内积是等价的,我赞同这一观点。当我们将低维空间的数据映射到高维空间的时候,我们甚至不需要知道映射函数是什么,就算知道了又能怎么样,它只会给我们带来计算的复杂度。我们需要的是这种类型的核函数可以在低维空间中用怎样的形式表现出来,因为低维空间的表达式才是容易计算的。可以说,内积是核函数实现的一种技巧。没有内积,就没有核函数;没有核函数,也就体现不出内积的价值。原创 2019-09-25 17:07:14 · 2204 阅读 · 0 评论 -
监督和无监督、分类和回归算法总结
监督学习可以分为两类:分类和回归。原创 2019-08-26 19:55:06 · 12223 阅读 · 0 评论 -
Cross-validation\cross_val_score\鲁棒性
有时我们挑出的模型在测试集上的效果ok,但是在新的数据集上就没那么ok了,行话叫做鲁棒性(robust)不强。目前普遍的做法,是使用cross_validation来评估模型以及挑选模型。 它的基本思想就是将原始数据(dataset)进行分组,一部分做为训练集来训练模型,另一部分做为测试集来评价模型。原创 2019-08-01 23:10:33 · 2980 阅读 · 1 评论 -
random_state 与 random seed
random_state()是随机数的种子。在同一份数据集上,相同的种子产生相同的结果,不同的种子产生不同的划分结果原创 2019-08-01 21:09:35 · 3941 阅读 · 0 评论 -
TensorBoard 使用总结
一、安装pip install tensorflow#tensorboard版本与tensorflow一致,否则会报错pip install tensorboard二、使用cmd中执行以下命令:tensorboard -logdir='E:\jupyter\PycharmProjects\AI_master\CNN\logs'三、效果在浏览器打开http://carbon...原创 2019-07-23 22:11:31 · 1410 阅读 · 0 评论 -
模型评价ROC\AUC\查准率\查全率\F-score\混淆矩阵\KS曲线\PR曲线等
AUC(Area Under Curve)是由ROC(Receiver Operating Characteristic Curve,受试者工作特征曲线)及其曲线下的面积组成,而ROC是由真阳性率和假阳性率绘制而成的曲线,是反映敏感性和特异性连续变量的综合指标,ROC曲线上每个点反映着对同一信号刺激的感受性。混淆矩阵是ROC曲线绘制的基础,返回值是一个误差矩阵,常用来可视化地评估监督学习算法的性能。指标还有查准率、查全率和F-score等原创 2019-08-04 22:08:32 · 2738 阅读 · 0 评论 -
PCA(一)
1)将原始数据按列组成n行m列矩阵X 2)将X的每一行(代表一个属性字段)进行零均值化,即减去这一行的均值 3)求出协方差矩阵 4)求出协方差矩阵的特征值及对应的特征向量 5)将特征向量按对应特征值大小从上到下按行排列成矩阵,取前k行组成矩阵P 6)Y=PX即为降维到k维后的数据原创 2019-07-26 11:19:27 · 2193 阅读 · 0 评论 -
范数 稀疏性 算法时间、空间复杂度
文章目录一、L0 范数1.1 稀疏化的好处是是什么?二、L1 范数2.1 L2避免过拟合的原理三、L2 范数(稀疏规则算子)四、时间复杂度与空间复杂度4.1 时间复杂度空间复杂度一、L0 范数 L0范数是指向量中非0的元素的个数。 如果我们用L0范数来规则化一个参数矩阵W的话,就是希望W的大部分元素都是0。这太直观了,太露骨了吧,换句话说,让参数W是稀疏的。1.1 稀疏化的好处是是什么...原创 2019-07-26 11:02:08 · 4129 阅读 · 1 评论 -
残差、方差、偏差、MSE均方误差、Bagging、Boosting、过拟合欠拟合和交叉验证
残差在数理统计中是指实际观察值与估计值(拟合值)之间的差。Bias反映的是模型在样本上的输出与真实值之间的误差,即模型本身的精确度。Variance反映的是模型每一次输出结果与模型输出期望之间的误差,即模型的稳定性。原创 2019-10-11 11:03:51 · 74333 阅读 · 0 评论