开源大模型详解


🎈 作者:Linux猿

🎈 简介:CSDN博客专家🏆,华为云享专家🏆,Linux、C/C++、云计算、物联网、面试、刷题、算法尽管咨询我,关注我,有问题私聊!

🎈 欢迎小伙伴们点赞👍、收藏⭐、留言💬 


本篇文章主要对开源大模型进行总结和介绍。 

一、什么是大模型?

大模型指网络规模巨大的深度学习模型,具体表现为模型的参数量规模较大,其规模通常在千亿级别。

二、LLaMa 2

LLaMa 2 是 Meta 发布的开源大模型,是开源可商用的版本,有不错的使用效果。

LLaMa 2 有参数量有三种类型:7B、13B、70B。 

2.1 论文和代码

github 地址:GitHub - facebookresearch/llama: Inference code for LLaMA models

论文地址:

### 大型模型开源项目及相关资源 在信息技术领域,多个大型模型已经被开源,允许研究者和开发者访问并贡献于这些项目。这不仅促进了技术进步,还推动了社区合作和发展。 #### 开源的大规模预训练模型实例 一些显著的例子包括: - **BERT (Bidirectional Encoder Representations from Transformers)**:由Google发布的一个深度双向变压器编码器网络,在自然语言处理任务中表现出色[^1]。 - **GPT系列(Generative Pretrained Transformer)**:OpenAI推出的基于Transformer架构的语言生成模型家族,其中GPT-3尤为著名,尽管其完整的参数量版本并未完全开放给公众下载,但提供了API接口供外部调用。 - **ERNIE**: 百度研发的知识增强型大规模预训练模型,旨在通过融合百科全书等结构化知识来提升理解能力。 #### 如何参与到大模型开源工作中? 对于有兴趣加入此类项目的个人而言,可以从以下几个方面入手: - **阅读官方文档和技术论文**:了解目标模型的设计理念、算法原理以及实现细节,这是参与任何软件工程的基础工作之一。 - **熟悉代码仓库操作流程**:大多数知名的大规模预训练模型都会托管在一个或多个公共平台上,如GitHub。掌握Git工具及其协作模式有助于更高效地与其他贡献者互动交流。 - **从小处着手做出改进**:无论是修复Bug还是优化现有功能模块,每一次提交都是宝贵的学习经历;同时也能让维护团队注意到自己的存在价值。 ```python import transformers as trfms from datasets import load_dataset # 加载预训练好的bert-base-uncased模型 model_name = 'bert-base-uncased' tokenizer = trfms.BertTokenizer.from_pretrained(model_name) model = trfms.BertModel.from_pretrained(model_name) # 准备输入数据集 dataset = load_dataset('glue', 'mrpc') tokenized_datasets = dataset.map(lambda examples: tokenizer(examples['sentence1'], examples['sentence2'], truncation=True), batched=True) ``` 上述Python脚本展示了如何利用Hugging Face提供的`transformers`库加载一个预先训练过的BERT模型,并准备GLUE基准测试中的MRPC子任务的数据集作为输入样本。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Muti-Agent

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值