计算机视觉与深度学习 | 视觉里程计算法综述(传统+深度)

视觉里程计算法综述

  • 1. 算法分类与原理
    • 1.1 传统几何方法
    • 1.2 深度学习方法
  • 2. 关键公式与模型
    • 2.1 本征矩阵分解
    • 2.2 深度学习模型架构
  • 3. 代码实现与开源项目
    • 3.1 传统方法实现
    • 3.2 深度学习方法实现
  • 4. 挑战与未来方向
  • 总结
  • 传统视觉里程计算法综述
    • 1. 算法分类与核心原理
      • 1.1 特征点法
      • 1.2 直接法
    • 2. 经典算法与公式详解
      • 2.1 特征点法代表:ORB-SLAM
      • 2.2 直接法代表:SVO(半直接法)
      • 2.3 点线融合方法:EDPLVO
    • 3. 代码实现与开源项目
      • 3.1 特征点法实现
      • 3.2 直接法实现
    • 4. 挑战与改进方向
    • 总结
  • 基于深度学习的视觉里程计算法综述
    • 一、算法分类与核心原理
    • 二、关键公式与模型
    • 三、代码实现与开源项目
    • 四、挑战与未来方向
    • 总结

1. 算法分类与原理

视觉里程计(Visual Odometry, VO)通过分析连续图像帧间的几何或深度学习特征,估计相机的运动轨迹。其核心方法可分为传统几何方法和基于深度学习的方法。

1.1 传统几何方法

原理
传统方法通过特征提取、匹配和运动估计实现位姿解算。关键步骤包括:

  • 特征检测与匹配:使用SIFT、ORB等算法提取特征点,并通过RANSAC剔除离群点。
  • 运动估计:根据匹配特征点计算本征矩阵(Essential Matrix)或单应矩阵(Homography Matrix)。例如,对极约束公式为:
    p′TEp=0 \mathbf{p}'^T \mathbf{E} \mathbf{p} = 0 p
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

北斗猿

代码有情,打赏有爱!谢谢!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值