自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(41)
  • 收藏
  • 关注

原创 Cannot load cudnn shared library. Cannot invoke method cudnnGetVersion.

正常显示的情况下,在 Anaconda 环境下跑常规的深度学习框架(如 TensorFlow, PyTorch, PaddlePaddle 等)时,一般不需要额外安装 CUDA 或 cuDNN 工具,而是直接通过。(比如 PaddlePaddle),那么按包的要求来即可。有些时候特殊的包需要特殊版本的。在 Nvidia 驱动正常安装,,那么您就不会再遇到此问题。的显示,选择与其一致的。如果可以使用上述命令找到。

2024-05-29 17:36:15 1120 2

原创 广度优先搜索算法 BFS

广度优先搜索(BFS)是一种用于图和树的遍历算法。该算法从一个给定的节点(起始节点)开始,探索所有该节点的邻居节点。然后对每个邻居节点,它再进一步探索它们的未访问的邻居节点,并将它们添加到一个队列中。这一过程会持续进行,直到队列为空,或者找到目标节点。BFS逐层地进行搜索,首先检查距离起始节点最近的所有节点,然后逐渐向外扩展到更远的节点。该算法在许多问题中都非常有效,包括最短路径搜索、网络爬虫、社交网络分析等。

2023-08-31 10:26:21 228

原创 tsfresh 报错 AttributeError: module ‘pandas.core.strings‘ has no attribute ‘StringMethods‘

主要是dask这个库导致的,直接卸载或者升级到最新版本即可。

2023-08-30 14:59:02 1386

原创 将两个数据集的数据分布绘制在一张图上

【代码】将两个数据集的数据分布绘制在一张图上。

2023-06-06 13:26:00 1471

原创 pip永久更换清华源

【代码】pip永久更换清华源。

2023-04-14 09:45:24 1143

原创 Python请求HTTPS证书错误

【代码】Python请求HTTPS证书错误。

2022-11-06 21:24:31 322

转载 Python绘制子图

【代码】Python绘制子图。

2022-10-11 22:57:22 6268 1

原创 Mac安装label失败,解决方案。

~

2022-06-13 17:19:21 344

原创 Mac OS sudo免密设置

解决方法:修改/etc/sudoers文件即可解决步骤:sudo chmod u-w /etc/sudoerssudo visudo将#%admin ALL=(ALL) AL替换为 %admin ALL=(ALL) NOPASSWD: ALLESC → : →WQ 完事

2022-05-05 21:44:39 1641

原创 Python xlsx转xls xls文件修复

import os.pathimport win32com.client as win32rootdir = r''# 三个参数:父目录;所有文件夹名(不含路径);所有文件名for parent, dirnames, filenames in os.walk(rootdir): for fn in filenames: filedir = os.path.join(parent, fn) excel = win32.gencache.EnsureDispatc

2022-04-23 22:29:51 881

原创 再循环中使用plt画图

若不想每次循环的图表都在一张画布上显示,可以再画图结束后添加一句:plt.clf()

2022-04-23 22:26:52 1882

原创 matplotlib 画图之坐标轴不等距

对于一些不是均衡分布的数据问题,若采用等距坐标,会导致图表的可读性降低,这个时候只需要在代码中加一句话即可.plt.xscale('log')其中,log还可以换成以下方法。{"linear", "log", "symlog", "logit", ...}添加该代码之前添加该代码之后...

2022-04-23 22:25:20 3979

原创 力扣704二分查找、278第一个错误的版本、35搜索插入位置

当前进度: 11/150题目来源:力扣704题知识点 :二分查找704. 二分查找题目:给定一个 n 个元素有序的(升序)整型数组 nums 和一个目标值 target ,写一个函数搜索 nums 中的 target,如果目标值存在返回下标,否则返回 -1。示例 1:输入: nums = [-1,0,3,5,9,12], target = 9输出: 4解释: 9 出现在 nums 中并且下标为 4解题思路:首先这个题目是一个经典的二分查找问题,因此,解题第一步,首先初始化left、

2022-04-20 23:53:33 131

原创 力扣T1094拼车、T1109航班订购统计

当前进度: 10/150题目来源:力扣1094题、力扣1109题解题思路:B站讲解这两个题目均为 查分数组问题,具体讲解,请看B站讲解1094. 拼车class Solution: def carPooling(self, trips: List[List[int]], capacity: int) -> bool: a = [0]* 1001 flag = True for list_ in trips:

2022-04-18 22:20:24 197

原创 力扣62.不同路径(动态规划)

当前进度: 7/150题目来源:力扣62题解题思路:B站讲解62.不同路径一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为 “Start” )。机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为 “Finish” )。问总共有多少条不同的路径?示例 1:输入:m = 3, n = 7输出:28示例 2:输入:m = 3, n = 2输出:3解释:从左上角开始,总共有 3 条路径可以到达右下角。向右 -> 向下 ->

2022-04-16 22:54:55 437

原创 力扣64. 最小路径和

当前进度: 6/150题目来源:力扣64题解题思路:B站视频链接,审核中,审核通过上传64. 最小路径和给定一个包含非负整数的 m x n 网格 grid ,请找出一条从左上角到右下角的路径,使得路径上的数字总和为最小。说明:每次只能向下或者向右移动一步。示例 1:输入:grid = [[1,3,1],[1,5,1],[4,2,1]]输出:7解释:因为路径 1→3→1→1→1 的总和最小。示例 2:输入:grid = [[1,2,3],[4,5,6]]输出:12链 接

2022-04-15 23:24:12 246

原创 为什么要添加随机数种子(Random_state)

在需要设置random_state的地方给其赋一个值,当多次运行此段代码能够得到完全一样的结果,别人运行此代码也可以复现你的过程。若不设置此参数则会随机选择一个种子,执行结果也会因此而不同了。虽然可以对random_state进行调参,但是调参后在训练集上表现好的模型未必在陌生训练集上表现好,所以一般会随便选取一个random_state的值作为参数。可以认为是:若该随机数种子相同,则在训练过程中保证每次训练所选的数据是一样的...

2022-04-14 22:11:35 2374

原创 1672. 最富有客户的资产总量 and 567. 字符串的排列

1672. 最富有客户的资产总量题解一:直接遍历,数组求和,一行代码搞定,不解释class Solution: def maximumWealth(self, accounts: List[List[int]]) -> int: return max(sum(accounts[i]) for i in range(len(accounts)))567. 字符串的排列题解二:暴力破解循环枚举出s1中所有字符可能组合的字符串,然后遍历s1,若s2包含s1

2022-04-14 20:58:57 287

原创 二阶差分数组

import osimport sysn,m = map(int,input().split())a = [0]*nb = [0]*(n+10)c = [0]*(n+10)for i in range(m): l,r,s,e = map(int,input().split()) d = (e-s)/(r-l) c[l] += s c[l+1] += (d-s) c[r+1] = c[r+1] - d - e c[r+2] += ess = 0for i in ran.

2022-03-30 15:25:53 648

原创 差分数组——区间修改

差分数组—区间修改问题使用差分数组可以将算法的复杂度从O(n²)降到O(n)1.首先构建差值数组。2.将起点位置的差值数组相应加一个数,终点的下一位减去那个数。(为了防止数组越界,建议差值数组长度+1)3.从前往后累加求和...

2022-03-28 22:53:57 393

原创 快速排序【python】

def quick_xiao(list_x): if len(list_x) <=1: return list_x else: p = list_x[0] left = quick_xiao([x for x in list_x[1:] if x < p]) right = quick_xiao([x for x in list_x[1:] if x >= p]) return left +

2022-03-28 22:28:51 580

原创 DataFrame对某一列的值进行处理

例如:对 DF中 ** age**列的所有数X进行平方运算放到原位置df['age'] = df['age'].map(lambda x: x**2)

2022-03-04 22:58:13 2917

原创 PyQt5 将QTableWidget导出为csv

def exportToExcel(self): wb = openpyxl.Workbook() columnHeaders = [] # create column header list for j in range(self.ui.table.columnCount()): columnHeaders.append(self.ui.table.horizontalHeaderItem(j).text())...

2022-02-20 21:48:51 2450

原创 PyQt5 读取csv文件到Table

def creat_table_show(self): path_openfile_name =self.ui.FilePath.text()#获取文件地址 if len(path_openfile_name) > 0: print(path_openfile_name) input_table = pd.read_csv(path_openfile_name) input_table_ro...

2022-02-18 00:27:06 1809 1

原创 Dataframe.info()保存为变量

import iobuf = io.StringIO() # 创建一个StringIO,便于后续在内存中写入strdf.info(buf=buf) # 写入s = buf.getvalue() # 读取

2022-02-17 23:34:00 354

转载 mac下 matplotlib plt中文乱码解决方案

在网上找了一大堆方法,花了很久,发现不是要安装各种字体就是要改配置,而且字体真的不好找也不好安装下面这个方法 亲测成功import numpy as npimport matplotlib.pyplot as pltplt.rcParams['font.sans-serif'] = ['Arial Unicode MS']# 或者 plt.rc('font', family='SimHei', size=13)...

2022-02-10 18:13:06 508 1

原创 机器学习中的评价指标

分类指标通常,分类指标主要包含错误率、精度、准确率(查准率)、召回率(查全率)、F1-score、ROC曲线、AUC和对孙函数等。错误率和精度在分类任务中,错误率是分类结果中错误数占总数的比例。精度则等于1-错误率。精确率与召回率精确度是指分类器判定为正类中真正的正类样本所占的比。召回率是指分类器判定为正类中占样本总正类样本数所占的比。精确度和召回率并不能真正反映分类器的性能,因此引入F1-score。x×y=zx \times y=zx×y=zF1-scoreF1Score=2×准确率

2022-01-23 15:22:17 1053

转载 自定义损失函数/评估函数

自定义评价函数from sklearn.metrics import make_scorerdef customize_score(true_value, predict): # 自定义函数, # true_value 为series格式(index,value) # predict 为ndarry格式[1,2,3,4...] return 0.5my_scorer = make_scorer(customize_score, greater_is_better=

2021-12-29 19:36:03 780

原创 DataFrame数据保存

data.to_csv(path,encoding="utf_8_sig") # utf_8_sig 可以防止中文乱码问题

2021-12-27 17:58:52 1065

原创 特征工程——编码

        在机器学习中,大多数算法,譬如逻辑回归,支持向量机SVM,k近邻算法等都只能够处理数值型数据,不能处理 文字,在sklearn当中,除了专用来处理文字的算法,其他算法在fit的时候全部要求输入数组或矩阵,也不能够导 入文字型数据(其实手写决策树和普斯贝叶斯可以处理文字,但是sklearn中规定必须导入数值型)。        然而在.

2021-12-23 14:07:46 943

原创 特征工程——数据预处理(数据归一化)

归一化

2021-12-19 17:02:32 247

原创 Linux超大文件删除前N行

这个方法比sed快几百倍是有的。对于小文件可以用sed来操作sed -i '1,14030000d' send_url_log.txttail -n +3 old_file > new_filemv new_file old_file

2021-11-01 16:25:32 484

原创 Jupiter notebook 自动补全代码

pip3 install jupyter_contrib_nbextensionsjupyter contrib nbextension install --userpip3 install jupyter_nbextensions_configuratorjupyter nbextensions_configurator enable --user点击Nbextensions 勾选Hinterland

2021-11-01 16:24:49 236

原创 内蒙能源学习代码

# coding:utf8import reimport requestsimport sysurl = 'http://renshe.aqscpx.com/user/toCourse.do?menuid=$item.ID'head = {'Cookie':'SESSION=80414b38-bd4e-4742-8994-a9cf03664cee; JSESSIONID=7091E8CFC93B8E038A22158CF2FA2FFD'}str_return = requests.get(url

2021-11-01 16:24:08 77

原创 Python xlsx转xls xls文件修复

这个是用的wps,因为用office老是弹窗,所以不得已。import os.pathimport win32com.client as win32rootdir = r''# 三个参数:父目录;所有文件夹名(不含路径);所有文件名for parent, dirnames, filenames in os.walk(rootdir): for fn in filenames: filedir = os.path.join(parent, fn) excel

2021-11-01 16:23:33 319 1

转载 Safari浏览器下载知网文献中文乱码

引言你是否也遇到过相同的问题,明明是正经论文,下载之后文件名就乱码了。比如这样:下面说一下怎么解决这个问题。解决方法1. 首先创建一个自动操作2. 选择shell脚本3. 将以下代码粘贴到右边,并且调整一些选项,具体见下图。for f in "$@"do fileName=$(basename ${f}) filePath=$(dirname ${f}) # 两种乱码类型 GBK、UTF-8 { fileNewName=$(echo $fileN

2021-09-29 20:55:03 8067 4

原创 Linux下conda的基本用法

升级conda update conda卸载rm -rf anaconda创建虚拟环境conda create -n xxxx python=3.9 xxx为虚拟环境名启用XXXX环境conda activate xxxx 关闭环境conda deactivate显示所有的虚拟环境conda env list 安装/卸载conda install/uninstall xxx查看已安装的文件包conda list #查看已经安装的文件包

2021-09-08 16:56:44 188

原创 简约版【HPV疫苗实时在线检测】

简约版【HPV疫苗检测】更新于:2021/08/30仅用于保存,方便后期完善# -*- coding: UTF-8 -*-import datetimeimport jsonimport timeimport requestsrequests.packages.urllib3.disable_warnings()def get_city(cid): value = [] url = 'https://wx.scmttec.com/base/region/chil

2021-09-07 09:51:47 1830 5

转载 复制Hive表结构和数据的方法

在使用Hive的过程中,复制表结构和数据是很常用的操作,本文介绍两种复制表结构和数据的方法。1、复制非分区表表结构和数据Hive集群中原本有一张bigdata17_old表,通过下面的SQL语句可以将bigdata17_old的表结构和数据复制到bigdata17_new表:CREATE TABLE bigdata17_new AS SELECT * FROM bigdata17_old;如果是分区表,则必须使用like关键字复制表结构,包括分区,然后用insert语句将老表的数据插入新表中。2

2021-09-06 20:54:16 4446

转载 Mac/linux电脑安装Homebrew(国内地址)亲测成功!!

最近电脑重装系统,安装Homebrew遇到问题,尝试了好多方法都安装失败,最终看到这个帖子才安装成功!非常感谢!苹果电脑 常规安装脚本(推荐 完全体 几分钟安装完成):/bin/zsh -c “$(curl -fsSL https://gitee.com/cunkai/HomebrewCN/raw/master/Homebrew.sh)”苹果电脑 极速安装脚本(精简版 几秒钟安装完成):/bin/zsh -c “$(curl -fsSL https://gitee.com/cunkai/Hom

2021-06-23 22:52:39 664

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除