步骤一:定义神经网络结构
- 注意:由于一次batch_size的大小为64,表示一次放入64张图片,且Flatten()只会对单张图片的全部通道做拉直操作,也就是不会将batch_size合并,但是一张图片有3个通道,在Maxpool层之后,有64个通道,且每个通道的大小为4*4,所以Flatten()的输入为[64, 64, 4, 4]那么Flatten()的输出就为[64, 1024], 1024 = 64 * 4 * 4
- 注意:通过ones()函数创建一个全1的tensor,作为输入数据,我们只需要指定输入数据的形状即可,我们可以通过ones()创建的简单输入,来检测网络的结构是否正确,()内写序列
- 代码如下:
import torch
from torch import nn
class Tudui(nn.Module):
def __init__(self):
super().__init__()
self.model = nn.Sequential(
nn.Conv2d(3,32,5,1,2),
nn.MaxPool2d(2),
nn.Conv2d(32,32,5,1, 2),
nn.MaxPool2d(2),
nn.Conv2d(32,64,5,1,2),
nn.MaxPool2d(2),
nn.Flatten(),
nn.Linear(1024, 64),
nn.Linear(64, 10)
)
def forward(self, x):
x = self.model(x)
return x
if __name__ == '__main__':
tudui = Tudui()
input = torch.ones((64, 3, 32, 32))
output = tudui(input)
print(output.shape)
步骤二:导入数据集,载入数据,创建网络模型,设置训练参数
- 注意:有些代码的模型结构在module.py文件夹内,需要我们手动导包后才能创建实例
- 注意: 先进行梯度清零,之后再反向传播、更新参数
- 注意:优化器实例 . 梯度清零,损失实例 . 反向传播,优化器实例 . 更新参数
import torch
import torchvision
from torch import nn
from torch.utils.data import DataLoader
from torchvision.transforms import transforms
from learn_pytorch.module import Tudui
train_dataset = torchvision.datasets.CIFAR10(root='Dataset', train=True, transform=transforms.ToTensor(), download=True)
test_dataset = torchvision.datasets.CIFAR10(root='Dataset', train=False, transform=transforms.ToTensor(), download=True)
train_dataset_size = len(train_dataset)
test_dataset_size = len(test_dataset)
print('训练数据集大小:', train_dataset_size)
print('测试数据集大小:', test_dataset_size)
train_loader = DataLoader(dataset=train_dataset, batch_size=64)
test_loader = DataLoader(dataset=test_dataset, batch_size=64)
tudui = Tudui()
loss_fn =