Opinion Target和Expression的pipelined 方法和联合方法

Pipelined 方法:Joint Inference for Fine-grained Opinion Extraction:
参考其中的BaseLine:https://www.cs.cornell.edu/home/cardie/papers/acl13-joint.pdf

联合方法:Extracting Opinion Targets and Opinion Words from Online Reviews
with Graph Co-ranking: http://www.aclweb.org/anthology/P14-1030
对齐模型(Alignment Model):
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6858011

GridSearchCV pipeline 可以联合使用来进行模型的超参数调优。具体步骤如下: 1. 定义 pipeline,包括数据预处理、特征提取、模型训练等步骤。 2. 定义超参数的搜索空间,例如定义一个字典,包括要调整的超参数及其可能的值。 3. 使用 GridSearchCV 对 pipeline 进行交叉验证,寻找最佳的超参数组合。可以设置 GridSearchCV 的参数,如 cv(交叉验证的折数)、scoring(评估指标)、n_jobs(并行运行的作业数)等。 4. 使用最佳的超参数组合,对整个数据集进行训练,并进行预测。 下面是一个示例代码: ```python from sklearn.pipeline import Pipeline from sklearn.model_selection import GridSearchCV from sklearn.tree import DecisionTreeClassifier from sklearn.preprocessing import StandardScaler # 定义 pipeline pipeline = Pipeline([ ('scaler', StandardScaler()), ('clf', DecisionTreeClassifier()) ]) # 定义超参数的搜索空间 param_grid = { 'clf__max_depth': [1, 2, 3, 4], 'clf__min_samples_split': [2, 3, 4], 'clf__min_samples_leaf': [1, 2, 3] } # 使用 GridSearchCV 对 pipeline 进行交叉验证 grid_search = GridSearchCV(pipeline, param_grid=param_grid, cv=5, scoring='accuracy') grid_search.fit(X_train, y_train) # 输出最佳的超参数组合 print(grid_search.best_params_) # 使用最佳的超参数组合,对整个数据集进行训练,并进行预测 pipeline.set_params(**grid_search.best_params_) pipeline.fit(X_train, y_train) y_pred = pipeline.predict(X_test) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值