实时数仓-维表维护方案
维表维护方案
维度数据维护是实时数仓搭建的重要一环,接下来说公司维度处理上的方案演化。
阶段一
维度数据在mysql维护,flink job使用datastream api开发。实现RichSourceFunction,在invoke方法中执行查询逻辑。这个方案弊端有两点:
- 问题1
公司内Flink job大概有200个,每个job需要关联3到5张维度表。现有的维度表关联是用mysql source,每个维表需要维护一个链接,非常占用mysql的链接资源 - 问题2
基于mysql source的查询是周期性进行的,实际生产中是1h查询一次,此间维度表变化无法及时追踪
同时,flink sql已经迭代了几个大版本,公司也在尝试使用flink sql来完成指标计算。于是演化到阶段二
阶段二
一个库下所有维表通过cdc job导入kafka(upsert的方式),然后使用flink sql解析kafka的数据,将维度表导入hbase,最后在计算时事实表和hbase维度表使用动态表join的方式。架构图如下所示: