摘要
近年来,脑电(EEG)微状态越来越多地用于以毫秒尺度研究大规模脑网络的时间动态。通过研究其地形和时间序列,微状态研究有助于理解大脑在静息状态下的功能组织及其在神经或精神疾病中的变化。不同研究中的伪迹去除策略可能会改变微状态的地形和特征,从而可能降低研究结果的可推广性和可比性。因此,本研究的目的是测试微状态提取过程的可靠性以及微状态特征在不同脑电数据预处理策略下的稳定性,这些策略使用独立成分分析(ICA)去除数据中的伪迹。研究使用的是一个常规的静息态EEG数据集,其中包括受试者交替进行睁眼(EO)和闭眼(EC)两种状态的实验数据。执行了四种策略的测试:(i)不进行ICA预处理步骤,(ii)仅去除眼动伪迹,(iii)去除所有可靠识别的生理/非生理伪迹,(iv)仅保留可靠识别的大脑独立成分(ICs)。研究结果显示,跳过眼动伪迹去除步骤会影响微状态评估标准的稳定性、微状态地形,并大大降低EO/EC条件下微状态特征比较的统计功效,但当使用更为严格的预处理方法时,这些差异并不那么显著。总的来说,如果数据质量好并且去除了眼动伪迹,微状态地形和特征可以有效地反映大脑活动,即使在不同预处理步骤下也具有稳健性,这为自动化微状态提取流程铺平了道路。
引言
近年来,脑电(EEG)微状态研究因其在精神障碍诊断、监测、预后和预防方面的潜力而广受关注。微状态有助于我们在毫秒尺度上研究大规模脑网络的时间动态,这些网络以不同的同步模式为特征,并且这些模式在40-120ms内保持稳定,然后迅速转换到另一种状态。计算微状态地形的一种方法是执行k均值聚类分析。微状态的时间动态可以通过提取一些特征来分析,例如平均持续时间、特定微状态在一段时间内的平均出现次数、可解释的方差,以及微状态的结构和复杂性。
对现有研究的分析结果显示,不同研究中的微状态地形具有显著的相似性,这使得研究者们通常能在静息态EEG数据中观察到几种“典型”的微状态。然而,对现有研究的进一步分析表明,分配给同一微状态类别的模板地图存在相当大的地形差异。这种变异性可能取决于多种因素,包括用于提取微状态的算法类型或微状态类别的手动错误分类。另一个可能的相关变异性来源是微状态提取前用于预处理数据的流程和伪迹去除技术不同。目前,只要微状态与类似研究中的文献结果相符,数据就被认为预处理得当。然而,不同的伪迹去除策略可能会改变微状态的地形和特征。
独立成分分析(ICA)是去除EEG伪迹最常用的算法之一。事实上,ICA能够将头皮EEG电极上线性混合的信息分解为最大时间独立的成分(IC)过程,这些成分可用于评估个体EEG的有效源动态,而无需定义明确的脑电前向问题头部模型。每个IC都由一个相对于头皮通道的投影模式(通常称为“头皮图”)和时变符号的等效源信号(通常称为IC时程)来表示。在有足够的、经过适当预处理数据的情况下,ICA能够有效区分脑电信号中的各种伪迹,例如心电图(ECG)信号伪迹、头皮和颈部肌肉的肌电图(EMG)活动、由于眼动、眨眼和眼动震颤引起的眼电图(EOG)活动,以及由头皮和电极之间连接偶尔中断所产生的单通道噪声。
将ICA伪迹去除作为微状态预处理步骤需要获得高度可靠的提取成分,并在进一步分析中正确解释和使用这些成分。然而,有时数据中的噪声(源于不充分的数据采集、低阻抗头皮/传感器接口小、无法解析的信号源)、数据采样不足(例如,可用的数据点不足)和算法缺陷(例如,收敛问题、局部极小值的存在)可能会降低IC的质量,这使得除了具有最高解释方差的IC(即眼动活动)之外,很难可靠地识别其他IC。一种可能的预处理方法是首先进行更宽松的滤波(例如,使用更高的高通频率以增加数据的平稳性),提取ICA成分,然后在更保守的预处理程序(例如较低的高通频率)后将它们用作空间滤波器。这种方法在需要保留低频信号(<1Hz)的实验中(例如在涉及睡眠/无意识状态的实验中)具有独特优势。
为了帮助识别哪些独立成分(IC)应保留或丢弃以便进行进一步分析,文献中描述了几种方法,例如通过评估数据重采样的稳定性、互信息量的减少或IC地形图的偶极性(即单个等效偶极子与IC头皮地形的拟合度)来进行判断。IC的分类进一步得到了自动分类方法如ICLabel的支持。然而,即使在正确识别IC之后,目前仍没有一套明确的规则来确定哪种IC去除策略最适合微状态提取。
一般来说,IC去除策略可以分为四种,从保守到激进依次为:(i)不进行ICA预处理(即直接使用经过带通滤波、插值坏导和坏段剔除的原始数据);(ii)仅去除眼部相关的IC(例如眨眼和眼动);(iii)去除所有可靠识别为生理伪迹的IC(例如心跳、肌肉活动等);(iv)仅保留可靠识别为脑部IC的成分(基于ICLabel输出概率和偶极性判断)。本研究的目的是测试微状态提取过程的可靠