基于OGG 实现Oracle到Kafka增量数据实时同步

本文详细介绍了如何使用Oracle GoldenGate (OGG) 实现Oracle数据库到Kafka的增量数据同步。首先,文章阐述了实时数据同步的需求背景,然后详细列举了从环境准备、OGG配置到全量数据同步和增量数据同步的每一步操作步骤,最后总结了OGG在数据实时流动中的作用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

背景

在大数据时代,存在大量基于数据的业务。数据需要在不同的系统之间流动、整合。通常,核心业务系统的数据存在OLTP数据库系统中,其它业务系统需要获取OLTP系统中的数据。传统的数仓通过批量数据同步的方式,定期从OLTP系统中抽取数据。但是随着业务需求的升级,批量同步无论从实时性,还是对在线OLTP系统的抽取压力,都无法满足要求。需要实时从OLTP系统中获取数据变更,实时同步到下游业务系统。

本文基于Oracle OGG,介绍一种将Oracle数据库的数据实时同步到Kafka消息队列的方法。

Kafka是一种高效的消息队列实现,通过订阅kafka的消息队列,下游系统可以实时获取在线Oracle系统的数据变更情况,实现业务系统。

环境介绍

组件版本

本案例中使用到的组件和版本

组件

版本

描述

源端Oracle

Oracle 12.2.0.1.0 Linux x64

源端Oracle

源端OGG

Oracle GoldenGate 12.3.0.1.4 for Oracle Linux x64

源端OGG,用于抽取源端Oracle的数据变更,并将变更日志发送到目标端

目标端OGG

OGG_BigData_Linux_x64_12.3.2.1.1

目标端OGG,接受源端发送的Oracle事物变更日志,并将变更推送到kafka消息队列。

目标端kafka

kafka_2.12-2.2.0

消息队列,接收目标端OGG推送过来的数据。

 

整体架构图

名词解释

1.OGG Manager

OGG Manager用于配置和管理其它OGG组件,配置数据抽取、数据推送、数据复制,启动和停止相关组件,查看相关组件的运行情况。

2.数据抽取(Extract)

抽取源端数据库的变更(DML, DDL)。数据抽取主要分如下几种类型:

  • 本地抽取

从本地数据库捕获增量变更数据,写入到本地Trail文件

  • 数据推送(Data Pump)

从本地Trail文件读取数据,推送到目标端。

  • 初始数据抽取

从数据库表中导出全量数据,用于初次数据加载

3.数据推送(Data Pump)

Data Pump是一种特殊的数据抽取(Extract)类型,从本地Trail文件中读取数据,并通过网络将数据发送到目标端OGG

4.Trail文件

数据抽取从源端数据库抓取到的事物变更信息会写入到Trail文件。

5.数据接收(Collector)

数据接收程序运行在目标端机器,用于接收Data Pump发送过来的Trail日志,并将数据写入到本地Trail文件。

6.数据复制(Replicat)

数据复制运行在目标端机器,从Trail文件读取数据变更,并将变更数据应用到目标端数据存储系统。本案例中,数据复制将数据推送到kafka消息队列。

7.检查点(Checkpoint)

检查点用于记录数据库事物变更。

 

操作步骤

源端Oracle配置

1.检查归档

使用OGG,需要在源端开启归档日志

SQL> archive log list;

    Database log mode              Archive Mode

    Automatic archival             Enabled

    Archive destination            /u01/app/oracle/product/12.2.0/db_1/dbs/arch

    Oldest online log sequence     2576

    Next log sequence to archive   2577

    Current log sequence           2577

2.检查数据库配置

SQL> select force_logging, supplementa