TensorFlow基本用法

本文介绍TensorFlow的基础操作,包括变量定义、基本运算、会话管理等,并通过实例演示如何进行矩阵运算、变量更新及占位符使用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

# __author__ = 'youngkl'
# -*- coding: utf-8 -*-
import tensorflow as tf

#1*2的矩阵
mat1=tf.constant([[3.,3.]])

#2*1的矩阵
mat2=tf.constant([[2.],[3.]])

ans=tf.matmul(mat1,mat2)#此时ans无法直接输出

'''
# 启动默认图
# sess=tf.Session()
#
# # 调用 sess 的 'run()' 方法来执行矩阵乘法 op, 传入 'ans' 作为该方法的参数.
# # 上面提到, 'ans' 代表了矩阵乘法 op 的输出, 传入它是向方法表明, 我们希望取回
# # 矩阵乘法 op 的输出.
# # 函数调用 'run(ans)' 触发了图中三个 op (两个常量 op 和一个矩阵乘法 op) 的执行
# res=sess.run(ans)
#
# print res
# # 任务完成, 关闭会话.
# sess.close()
'''
# with tf.Session() as sess:
#     res=sess.run([ans])
#     print res


'''
# 使用初始化器 initializer op 的 run() 方法初始化 'x'
sess1=tf.InteractiveSession()
a=tf.Variable([1.,2.])
b=tf.constant([2.,3.])

# 增加一个减法 sub op, 从 'x' 减去 'a'. 运行减法 op, 输出结果
a.initializer.run()
sub=tf.sub(a,b)
print sub.eval()
'''

'''
#创建一个变量 初始化为标量0
state=tf.Variable(0,name="counter")
# state=tf.Variable(0)
#创建一个op 作用是使state+1
one=tf.constant(1)
new_val=tf.add(state,one)
update=tf.assign(state,new_val)

#启动图后 变量必须先经过'初始化'
#首先必须添加一个'初始化'op到图中
init_op=tf.initialize_all_variables()

#启动图后 运行op
with tf.Session() as sess:
    sess.run(init_op)
    #打印state初始值
    print sess.run(state)

    #运行op 更新'state' 并打印state
    for i in range(3):
        sess.run(update)
        print sess.run(state)
#assign操作是图所描绘的表达式的一部分,调用run执行表达式之前 它并不会真正执行赋值操作
'''

'''
input1=tf.constant(3)
input2=tf.constant(2)
input3=tf.constant(5)
inter=tf.add(input2,input3)
mul=tf.mul(input1,inter)

with tf.Session() as sess:
    res=sess.run([mul,inter])
    print res
#[21, 7]
#获取多个tensor的值
'''

'''
input1=tf.placeholder(tf.float32)
input2=tf.placeholder(tf.float32)
output=tf.mul(input1,input2)
with tf.Session() as sess:
    print sess.run([output],feed_dict={input1:[7.],input2:[2.]})
#[array([ 14.], dtype=float32)]

'''





    

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值