MyBtais 批量插入慢排查及分析(结局)

文章详细描述了一位开发者在遇到MyBatis批量插入操作性能问题后,如何通过编写MyBatis插件进行耗时分析,发现主要耗时在于PreparedStatement的update方法。经过进一步测试,定位到可能与数据库连接池(如Hikari和Druid)以及特定插件有关,指出日志输出也可能影响效率。最终,作者经过长时间追踪,发现问题出在一个用于处理OracleIN函数限制的插件上,该插件的字符串处理方式导致了性能下降。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


前言

没有看过前文的朋友,可以先去看看上次在笔者笔记本上做的尝试:MyBatis痛点验证,使用 foreach 批量插入慢?
上次做的验证,因为无法复现生产场景,最终失败,这次我们来看后续进一步的验证与排查


一、同SQL以工程方式运行

我把上次在笔记本上的动态sql,移植到我们的工程代码里,放在一个普通查询接口里,进行usertest表的数据插入。而且一个方法内重复插好几次。

大家知道上次,我们的基准测试,一个对象的插入大约8ms
在这里插入图片描述

而同样插入一个对象,在工程里跑,大约需要 256ms !!

在这里插入图片描述

当我不知死活的尝试插入2000条数据时,耗时直接到达270s,整整四分半!!

在这里插入图片描述

二、使用Plugin排查耗时情况

1. 编写mybatis plugin

代码如下:

@Component
@Intercepts({
        @Signature(
                type = ParameterHandler.class,
                method = "setParameters",
                args = { PreparedStatement.class }) ,
        @Signature(
                type = StatementHandler.class,
                method = "prepare",
                args = { Connection.class ,Integer.class}),
        @Signature(
                type = StatementHandler.class,
                method = "update",
                args = { Statement.class}),
        @Signature(
                type = Executor.class,
                method = "update",
                args = { MappedStatement.class ,Object.class}) ,})
@Slf4j
public class ParameterPlugin implements Interceptor {
    @Override
    public Object intercept(Invocation invocation) throws Throwable {
        long start = System.currentTimeMillis();
        String parameterHandlerName = invocation.getTarget().getClass().getName();
        String statementName = invocation.getArgs()[0].getClass().getName();
        String methodName = invocation.getMethod().getName();
        Object returnVal = invocation.proceed();
        long end = System.currentTimeMillis();
        if ("prepare".equals(methodName)) {
            log.info("StatementHandler.prepare耗时: " + (end - start) + ", 其中start =" + start + ", end =" + end);
        }
        if ("setParameters".equals(methodName)) {
            log.info("参数装填时间" + (end - start) + ", 参数处理器类型为: " + parameterHandlerName + " ,statement类型为" + statementName
                    + ", 其中start =" + start + ", end =" + end);
        }
        if ("update".equals(methodName)) {
            log.info("update耗时: " + (end - start) + ", 其中start =" + start + ", end =" + end);
        }
        return returnVal;
    }
}

上述的plugin 可以同时截取到几大组件的核心方法耗时,然后运行程序,反复以100为长度,进行耗时占比分析

2. 反复测试,分析结果

在这里插入图片描述
在这里插入图片描述

我原先预期,可能是参数填充的问题,但通过结果看,100*26=2600 个字段的填充耗时在10ms上下,这肯定是没问题的。耗时的大头是两个update方法,因为Executor的update是包含StatementHandler的update的,所以我们找到了耗时的最终方法,即StatementHandler的update.

因为这是动态sql,所以最后是由 PreparedStatementHandler 来处理的,我们关注一下该方法

  @Override
  public int update(Statement statement) throws SQLException {
    PreparedStatement ps = (PreparedStatement) statement;
    ps.execute();
    int rows = ps.getUpdateCount();
    Object parameterObject = boundSql.getParameterObject();
    KeyGenerator keyGenerator = mappedStatement.getKeyGenerator();
    keyGenerator.processAfter(executor, mappedStatement, ps, parameterObject);
    return rows;
  }

3. 进一步测试

既然已经确定了是在PreparedStatementHandler.update()里导致耗时太高的,那我们就想办法把日志打进去

先把plugin稍作改造,自定义个update,内容照抄,然后加点日志。

@Intercepts({
        @Signature(
                type = ParameterHandler.class,
                method = "setParameters",
                args = { PreparedStatement.class }) ,
        @Signature(
                type = StatementHandler.class,
                method = "prepare",
                args = { Connection.class ,Integer.class}),
        @Signature(
                type = StatementHandler.class,
                method = "update",
                args = { Statement.class})})
@Slf4j
public class ParameterPlugin implements Interceptor {
    @Override
    public Object intercept(Invocation invocation) throws Throwable {
        String methodName = invocation.getMethod().getName();
        if ("update".equals(methodName)) {
            long time1 = System.currentTimeMillis();
            PreparedStatement ps = (PreparedStatement) invocation.getArgs()[0];
            long time2 = System.currentTimeMillis();
            if (ps instanceof Proxy) {
                InvocationHandler invocationHandler = Proxy.getInvocationHandler(ps);
                log.info("invocationHandler = " + invocationHandler.getClass().getName());
                if (invocationHandler instanceof PreparedStatementLogger) {
                    PreparedStatementLogger lo = (PreparedStatementLogger)invocationHandler;
                    PreparedStatement preparedStatement = lo.getPreparedStatement();
                    log.info("preparedStatement = " + preparedStatement.getClass().getName());
                    if (preparedStatement instanceof HikariProxyPreparedStatement) {
                        log.info("now in HikariProxyPreparedStatement");
                    }
                }
            }
            ps.execute();
            long time3 = System.currentTimeMillis();
            int rows = ps.getUpdateCount();
            long time4 = System.currentTimeMillis();
            log.info("自定义update开始: time2-time1=" + (time2-time1) + ", time3-time2=" + (time3-time2) + ", time4-time3="+ (time4-time3));
            return rows;
        }
        long start = System.currentTimeMillis();
        String parameterHandlerName = invocation.getTarget().getClass().getName();
        String statementName = invocation.getArgs()[0].getClass().getName();

        Object returnVal = invocation.proceed();
        long end = System.currentTimeMillis();
        if ("prepare".equals(methodName)) {
            log.info("StatementHandler.prepare耗时: " + (end - start) + ", 其中start =" + start + ", end =" + end);
        }
        if ("setParameters".equals(methodName)) {
            log.info("参数装填时间" + (end - start) + ", 参数处理器类型为: " + parameterHandlerName + " ,statement类型为" + statementName
                    + ", 其中start =" + start + ", end =" + end);
        }
        return returnVal;
    }
}

然后在笔记本和开发工程上都进行100条数据的插入

  • 笔记本DEMO上

在这里插入图片描述

  • 环境项目上

在这里插入图片描述
从而进一步缩小范围,demo中用到了Hikari作为线程池,但项目上用的却是 Druid ?这其实有点奇怪,因为项目和demo使用的都是 springboot 2.5.x,按理来说,默认使用的都是Hikari。因此接下来的任务就是指定配置,使得项目可以使用Hikari 而非 Druid 。


三、总结

现在终于告一段落了,至于Druid 为什么会这么慢,还是有隐藏的设置导致的,后面还会继续追查,更新在这里。但无论如何,至少也证明了罪责不在mybatis上,mybatis的运行还是十分快的,2000行*26字段的数据,参数填充仅需119ms,符合纯计算的速度

另外,在测试过程中,发现mybatis的日志输出影响也很可观,如果有必要,关闭日志输出也能有不小的效率提升

四、长期更新进度

PS: 再次追查该问题,使用Arthas ,目前定位jdbc驱动发送执行语句sendCommand耗时很长,单条插入语句达到300ms,然后单看发送本身没问题,反而是收到执行结果后,后面的checkErrorMessage耗时太长

com.mysql.cj.protocol.a.NativeProtocol.readMessage()

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

五、最终结果

时隔一年之久,终于找到了问题的根因,即是项目中的一个mybatis插件导致的,这个插件是用来解决《Mybatis plugin 的使用及原理》 里面提到的·oracle·的 in 函数不能超过1000个元素的问题。
这个插件会直接生成一个可执行SQL,也就是说会把所有的 ? 替换成其真正的值。

在这里插入图片描述

实现方式是使用for循环遍历,再用replaceFirst不停替换,这种字符串的处理导致非常慢。当然我是怎么发现的呢?其实也使用了很多方法和手段,最后发现还是JDK自己的工具最好用,使用的是visualVM排查出来的,具体步骤可参考添加链接描述

在这里插入图片描述

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

战斧

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值