gensim similarity计算文档相似度

本文介绍了如何利用gensim库中的models, corpora, similarities模块计算文档相似度。首先,建立语料库并进行分词与停用词过滤。接着,通过Dictionary生成词典并用doc2bow方法将文档转化为稀疏向量。然后,使用Similarity计算相似度。通过示例链接提供详细步骤。" 137228907,22847160,Python编程基础练习及答案解析,"['Python', '基础练习', '算法']

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

向量空间模型计算文档集合相似性。[0]
将原始输入的词转换为ID,词的id表示法简单易用,但是无法预测未登记词,难以挖掘词关系;词汇鸿沟[1]:任意两个词之间是独立的,无法通过词的ID来判断词语之间的关系,无法通过词的id判断词语之间的关系[2]

使用gensim包的models,corpora,similarities,对文档进行相似度计算,结果比较其他lda、doc2vec方法稳定。
主要步骤:

  • 1.建立语料库,os.walk方法遍历文件夹中的文件
  • 2.使用分词工具(jieba)进行分词、停用词过滤
  • 3.使用corpora.Dictionary()生成字典,该方法把所有单词取一个set,并对set中每一个单词分配一个id号的map
  • 4.dictionary.doc2bow()方法把文档用稀疏向量表示。
  • 5.similarities.Similarity()方法计算相似度
  • 6.构造训练数据和测试数据
  • 7.similarity[test_corpus]返回相似度最高的similarity.num_best 个文档。
    具体参考示例:https://github.com/iamxiaomu/docsim

借鉴
http://blog.itpub.net/16582684/viewspace-1253901/

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值