
正则极限学习机(RELM)
文章平均质量分 94
介绍基于智能优化算法优化的正则极限学习机
智能算法研学社(Jack旭)
书籍《智能优化算法及其MATLAB实现》,《Python智能优化算法:从原理到代码实现与应用》,《智能优化算法与MATLAB编程实践》作者,代码获取可通过公众号,或者私信。
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
基于麻雀算法优化的正则化极限学习机(RELM)的分类问题求解
由前文可知,RELM的初始权值和阈值都是随机产生。每次产生的初始权值和阈值具有满目性。本文利用麻雀算法对初始权值和阈值, 以及正则项进行优化。极限学习机的结构是一种典型的单隐层前馈 神经网络( SLFN)。采用随机法产生训练集和测试集,其中训练集包含 500 个样本,测试集包含 69 个样本。采用随机法产生训练集和测试集,其中训练集包含 500 个样本,测试集包含 69 个样本。适应度函数为,训练集和测试集(验证集)的分类错误率,分类错误率越低,代表分类正确率越高。作为输出,设定隐含层节点为。原创 2025-06-24 06:51:05 · 873 阅读 · 0 评论 -
基于麻雀算法优化的正则化极限学习机(RELM)的回归预测
由前文可知,RELM的初始权值和阈值都是随机产生。每次产生的初始权值和阈值具有满目性。本文利用麻雀算法对初始权值和阈值, 以及正则项进行优化。适应度函数选取训练后的MSE误差。最终优化的输出为最佳初始权值和阈值。然后利用最佳初始权值阈值训练后的网络对测试数据集进行测试。采用随机法产生训练集和测试集,其中训练集包含 1 900 个样 本,测试集包含 100 个样本。为了减少变量差异较大对模型性能的影响,在建立模型之前先对数据进行归一化。极限学习机的结构是一种典型的单隐层前馈 神经网络( SLFN)。原创 2025-05-26 15:48:49 · 661 阅读 · 0 评论 -
基于正则化极限学习机RELM的回归预测
采用随机法产生训练集和测试集,其中训练集包含 1 900 个样 本,测试集包含 100 个样本。为了减少变量差异较大对模型性能的影响,在建立模型之前先对数据进行归一化。极限学习机( ELM) 具 有训练速度快、泛化性能好的优点。极限学习机的结构是一种典型的单隐层前馈 神经网络( SLFN)。极限学习机的结构见图。作为输出,设定隐含层节点为。,随机选取输入层权 值。RELM 算法 :若。原创 2025-05-26 15:45:06 · 949 阅读 · 0 评论 -
基于指数分布算法优化的正则化极限学习机(RELM)的分类问题求解
由前文可知,RELM的初始权值和阈值都是随机产生。每次产生的初始权值和阈值具有满目性。本文利用指数分布算法对初始权值和阈值, 以及正则项进行优化。极限学习机的结构是一种典型的单隐层前馈 神经网络( SLFN)。采用随机法产生训练集和测试集,其中训练集包含 500 个样本,测试集包含 69 个样本。采用随机法产生训练集和测试集,其中训练集包含 500 个样本,测试集包含 69 个样本。适应度函数为,训练集和测试集(验证集)的分类错误率,分类错误率越低,代表分类正确率越高。作为输出,设定隐含层节点为。原创 2025-07-14 08:46:32 · 219 阅读 · 0 评论 -
基于斑马算法优化的正则化极限学习机(RELM)的分类问题求解
由前文可知,RELM的初始权值和阈值都是随机产生。每次产生的初始权值和阈值具有满目性。本文利用斑马算法对初始权值和阈值, 以及正则项进行优化。极限学习机的结构是一种典型的单隐层前馈 神经网络( SLFN)。采用随机法产生训练集和测试集,其中训练集包含 500 个样本,测试集包含 69 个样本。采用随机法产生训练集和测试集,其中训练集包含 500 个样本,测试集包含 69 个样本。适应度函数为,训练集和测试集(验证集)的分类错误率,分类错误率越低,代表分类正确率越高。作为输出,设定隐含层节点为。原创 2025-07-14 08:46:13 · 1303 阅读 · 0 评论 -
基于减法平均算法优化的正则化极限学习机(RELM)的分类问题求解
由前文可知,RELM的初始权值和阈值都是随机产生。每次产生的初始权值和阈值具有满目性。本文利用减法平均算法对初始权值和阈值, 以及正则项进行优化。极限学习机的结构是一种典型的单隐层前馈 神经网络( SLFN)。采用随机法产生训练集和测试集,其中训练集包含 500 个样本,测试集包含 69 个样本。采用随机法产生训练集和测试集,其中训练集包含 500 个样本,测试集包含 69 个样本。适应度函数为,训练集和测试集(验证集)的分类错误率,分类错误率越低,代表分类正确率越高。作为输出,设定隐含层节点为。原创 2025-07-14 08:46:02 · 1090 阅读 · 0 评论 -
基于袋獾算法优化的正则化极限学习机(RELM)的分类问题求解
由前文可知,RELM的初始权值和阈值都是随机产生。每次产生的初始权值和阈值具有满目性。本文利用袋獾算法对初始权值和阈值, 以及正则项进行优化。极限学习机的结构是一种典型的单隐层前馈 神经网络( SLFN)。采用随机法产生训练集和测试集,其中训练集包含 500 个样本,测试集包含 69 个样本。采用随机法产生训练集和测试集,其中训练集包含 500 个样本,测试集包含 69 个样本。适应度函数为,训练集和测试集(验证集)的分类错误率,分类错误率越低,代表分类正确率越高。作为输出,设定隐含层节点为。原创 2025-07-14 08:45:57 · 1336 阅读 · 0 评论 -
基于鱼鹰算法优化的正则化极限学习机(RELM)的分类问题求解
由前文可知,RELM的初始权值和阈值都是随机产生。每次产生的初始权值和阈值具有满目性。本文利用鱼鹰算法对初始权值和阈值, 以及正则项进行优化。极限学习机的结构是一种典型的单隐层前馈 神经网络( SLFN)。采用随机法产生训练集和测试集,其中训练集包含 500 个样本,测试集包含 69 个样本。采用随机法产生训练集和测试集,其中训练集包含 500 个样本,测试集包含 69 个样本。适应度函数为,训练集和测试集(验证集)的分类错误率,分类错误率越低,代表分类正确率越高。作为输出,设定隐含层节点为。原创 2025-07-14 08:45:37 · 1008 阅读 · 0 评论 -
基于驾驶训练算法优化的正则化极限学习机(RELM)的分类问题求解
由前文可知,RELM的初始权值和阈值都是随机产生。每次产生的初始权值和阈值具有满目性。本文利用驾驶训练算法对初始权值和阈值, 以及正则项进行优化。极限学习机的结构是一种典型的单隐层前馈 神经网络( SLFN)。采用随机法产生训练集和测试集,其中训练集包含 500 个样本,测试集包含 69 个样本。采用随机法产生训练集和测试集,其中训练集包含 500 个样本,测试集包含 69 个样本。适应度函数为,训练集和测试集(验证集)的分类错误率,分类错误率越低,代表分类正确率越高。作为输出,设定隐含层节点为。原创 2025-07-14 08:45:28 · 706 阅读 · 0 评论 -
基于浣熊算法优化的正则化极限学习机(RELM)的分类问题求解
由前文可知,RELM的初始权值和阈值都是随机产生。每次产生的初始权值和阈值具有满目性。本文利用浣熊算法对初始权值和阈值, 以及正则项进行优化。极限学习机的结构是一种典型的单隐层前馈 神经网络( SLFN)。采用随机法产生训练集和测试集,其中训练集包含 500 个样本,测试集包含 69 个样本。采用随机法产生训练集和测试集,其中训练集包含 500 个样本,测试集包含 69 个样本。适应度函数为,训练集和测试集(验证集)的分类错误率,分类错误率越低,代表分类正确率越高。作为输出,设定隐含层节点为。原创 2025-07-10 06:11:07 · 899 阅读 · 0 评论 -
基于厨师算法优化的正则化极限学习机(RELM)的分类问题求解
由前文可知,RELM的初始权值和阈值都是随机产生。每次产生的初始权值和阈值具有满目性。本文利用厨师算法对初始权值和阈值, 以及正则项进行优化。极限学习机的结构是一种典型的单隐层前馈 神经网络( SLFN)。采用随机法产生训练集和测试集,其中训练集包含 500 个样本,测试集包含 69 个样本。采用随机法产生训练集和测试集,其中训练集包含 500 个样本,测试集包含 69 个样本。适应度函数为,训练集和测试集(验证集)的分类错误率,分类错误率越低,代表分类正确率越高。作为输出,设定隐含层节点为。原创 2025-07-10 06:10:50 · 757 阅读 · 0 评论 -
基于卷积优化算法优化的正则化极限学习机(RELM)的分类问题求解
由前文可知,RELM的初始权值和阈值都是随机产生。每次产生的初始权值和阈值具有满目性。本文利用卷积优化算法对初始权值和阈值, 以及正则项进行优化。极限学习机的结构是一种典型的单隐层前馈 神经网络( SLFN)。采用随机法产生训练集和测试集,其中训练集包含 500 个样本,测试集包含 69 个样本。采用随机法产生训练集和测试集,其中训练集包含 500 个样本,测试集包含 69 个样本。适应度函数为,训练集和测试集(验证集)的分类错误率,分类错误率越低,代表分类正确率越高。作为输出,设定隐含层节点为。原创 2025-07-10 06:10:40 · 993 阅读 · 0 评论 -
基于人工兔算法优化的正则化极限学习机(RELM)的分类问题求解
由前文可知,RELM的初始权值和阈值都是随机产生。每次产生的初始权值和阈值具有满目性。本文利用人工兔算法对初始权值和阈值, 以及正则项进行优化。极限学习机的结构是一种典型的单隐层前馈 神经网络( SLFN)。采用随机法产生训练集和测试集,其中训练集包含 500 个样本,测试集包含 69 个样本。采用随机法产生训练集和测试集,其中训练集包含 500 个样本,测试集包含 69 个样本。适应度函数为,训练集和测试集(验证集)的分类错误率,分类错误率越低,代表分类正确率越高。作为输出,设定隐含层节点为。原创 2025-07-10 06:10:30 · 786 阅读 · 0 评论 -
基于协作搜索算法优化的正则化极限学习机(RELM)的分类问题求解
由前文可知,RELM的初始权值和阈值都是随机产生。每次产生的初始权值和阈值具有满目性。本文利用协作搜索算法对初始权值和阈值, 以及正则项进行优化。极限学习机的结构是一种典型的单隐层前馈 神经网络( SLFN)。采用随机法产生训练集和测试集,其中训练集包含 500 个样本,测试集包含 69 个样本。采用随机法产生训练集和测试集,其中训练集包含 500 个样本,测试集包含 69 个样本。适应度函数为,训练集和测试集(验证集)的分类错误率,分类错误率越低,代表分类正确率越高。作为输出,设定隐含层节点为。原创 2025-07-10 06:10:21 · 804 阅读 · 0 评论 -
基于人工蜂鸟算法优化的正则化极限学习机(RELM)的分类问题求解
由前文可知,RELM的初始权值和阈值都是随机产生。每次产生的初始权值和阈值具有满目性。本文利用人工蜂鸟算法对初始权值和阈值, 以及正则项进行优化。极限学习机的结构是一种典型的单隐层前馈 神经网络( SLFN)。采用随机法产生训练集和测试集,其中训练集包含 500 个样本,测试集包含 69 个样本。采用随机法产生训练集和测试集,其中训练集包含 500 个样本,测试集包含 69 个样本。适应度函数为,训练集和测试集(验证集)的分类错误率,分类错误率越低,代表分类正确率越高。作为输出,设定隐含层节点为。原创 2025-07-10 06:10:13 · 817 阅读 · 0 评论 -
基于蜣螂算法优化的正则化极限学习机(RELM)的分类问题求解
由前文可知,RELM的初始权值和阈值都是随机产生。每次产生的初始权值和阈值具有满目性。本文利用蜣螂算法对初始权值和阈值, 以及正则项进行优化。极限学习机的结构是一种典型的单隐层前馈 神经网络( SLFN)。采用随机法产生训练集和测试集,其中训练集包含 500 个样本,测试集包含 69 个样本。采用随机法产生训练集和测试集,其中训练集包含 500 个样本,测试集包含 69 个样本。适应度函数为,训练集和测试集(验证集)的分类错误率,分类错误率越低,代表分类正确率越高。作为输出,设定隐含层节点为。原创 2025-07-10 06:10:03 · 733 阅读 · 0 评论 -
基于法医调查算法优化的正则化极限学习机(RELM)的分类问题求解
由前文可知,RELM的初始权值和阈值都是随机产生。每次产生的初始权值和阈值具有满目性。本文利用法医调查算法对初始权值和阈值, 以及正则项进行优化。极限学习机的结构是一种典型的单隐层前馈 神经网络( SLFN)。采用随机法产生训练集和测试集,其中训练集包含 500 个样本,测试集包含 69 个样本。采用随机法产生训练集和测试集,其中训练集包含 500 个样本,测试集包含 69 个样本。适应度函数为,训练集和测试集(验证集)的分类错误率,分类错误率越低,代表分类正确率越高。作为输出,设定隐含层节点为。原创 2025-07-10 06:09:56 · 804 阅读 · 0 评论 -
基于孔雀算法优化的正则化极限学习机(RELM)的分类问题求解
由前文可知,RELM的初始权值和阈值都是随机产生。每次产生的初始权值和阈值具有满目性。本文利用孔雀算法对初始权值和阈值, 以及正则项进行优化。极限学习机的结构是一种典型的单隐层前馈 神经网络( SLFN)。采用随机法产生训练集和测试集,其中训练集包含 500 个样本,测试集包含 69 个样本。采用随机法产生训练集和测试集,其中训练集包含 500 个样本,测试集包含 69 个样本。适应度函数为,训练集和测试集(验证集)的分类错误率,分类错误率越低,代表分类正确率越高。作为输出,设定隐含层节点为。原创 2025-07-10 06:09:48 · 558 阅读 · 0 评论 -
基于白鲸算法优化的正则化极限学习机(RELM)的分类问题求解
由前文可知,RELM的初始权值和阈值都是随机产生。每次产生的初始权值和阈值具有满目性。本文利用白鲸算法对初始权值和阈值, 以及正则项进行优化。极限学习机的结构是一种典型的单隐层前馈 神经网络( SLFN)。采用随机法产生训练集和测试集,其中训练集包含 500 个样本,测试集包含 69 个样本。采用随机法产生训练集和测试集,其中训练集包含 500 个样本,测试集包含 69 个样本。适应度函数为,训练集和测试集(验证集)的分类错误率,分类错误率越低,代表分类正确率越高。作为输出,设定隐含层节点为。原创 2025-07-09 06:34:12 · 1022 阅读 · 0 评论 -
基于侏儒猫鼬算法优化的正则化极限学习机(RELM)的分类问题求解
由前文可知,RELM的初始权值和阈值都是随机产生。每次产生的初始权值和阈值具有满目性。本文利用侏儒猫鼬算法对初始权值和阈值, 以及正则项进行优化。极限学习机的结构是一种典型的单隐层前馈 神经网络( SLFN)。采用随机法产生训练集和测试集,其中训练集包含 500 个样本,测试集包含 69 个样本。采用随机法产生训练集和测试集,其中训练集包含 500 个样本,测试集包含 69 个样本。适应度函数为,训练集和测试集(验证集)的分类错误率,分类错误率越低,代表分类正确率越高。作为输出,设定隐含层节点为。原创 2025-07-09 06:34:03 · 891 阅读 · 0 评论 -
基于食肉植物算法优化的正则化极限学习机(RELM)的分类问题求解
由前文可知,RELM的初始权值和阈值都是随机产生。每次产生的初始权值和阈值具有满目性。本文利用食肉植物算法对初始权值和阈值, 以及正则项进行优化。极限学习机的结构是一种典型的单隐层前馈 神经网络( SLFN)。采用随机法产生训练集和测试集,其中训练集包含 500 个样本,测试集包含 69 个样本。采用随机法产生训练集和测试集,其中训练集包含 500 个样本,测试集包含 69 个样本。适应度函数为,训练集和测试集(验证集)的分类错误率,分类错误率越低,代表分类正确率越高。作为输出,设定隐含层节点为。原创 2025-07-09 06:33:54 · 839 阅读 · 0 评论 -
基于金豺算法优化的正则化极限学习机(RELM)的分类问题求解
由前文可知,RELM的初始权值和阈值都是随机产生。每次产生的初始权值和阈值具有满目性。本文利用金豺算法对初始权值和阈值, 以及正则项进行优化。极限学习机的结构是一种典型的单隐层前馈 神经网络( SLFN)。采用随机法产生训练集和测试集,其中训练集包含 500 个样本,测试集包含 69 个样本。采用随机法产生训练集和测试集,其中训练集包含 500 个样本,测试集包含 69 个样本。适应度函数为,训练集和测试集(验证集)的分类错误率,分类错误率越低,代表分类正确率越高。作为输出,设定隐含层节点为。原创 2025-07-09 06:33:47 · 951 阅读 · 0 评论 -
基于鹈鹕算法优化的正则化极限学习机(RELM)的分类问题求解
由前文可知,RELM的初始权值和阈值都是随机产生。每次产生的初始权值和阈值具有满目性。本文利用鹈鹕算法对初始权值和阈值, 以及正则项进行优化。极限学习机的结构是一种典型的单隐层前馈 神经网络( SLFN)。采用随机法产生训练集和测试集,其中训练集包含 500 个样本,测试集包含 69 个样本。采用随机法产生训练集和测试集,其中训练集包含 500 个样本,测试集包含 69 个样本。适应度函数为,训练集和测试集(验证集)的分类错误率,分类错误率越低,代表分类正确率越高。作为输出,设定隐含层节点为。原创 2025-07-09 06:33:39 · 884 阅读 · 0 评论 -
基于北方苍鹰算法优化的正则化极限学习机(RELM)的分类问题求解
由前文可知,RELM的初始权值和阈值都是随机产生。每次产生的初始权值和阈值具有满目性。本文利用北方苍鹰算法对初始权值和阈值, 以及正则项进行优化。极限学习机的结构是一种典型的单隐层前馈 神经网络( SLFN)。采用随机法产生训练集和测试集,其中训练集包含 500 个样本,测试集包含 69 个样本。采用随机法产生训练集和测试集,其中训练集包含 500 个样本,测试集包含 69 个样本。适应度函数为,训练集和测试集(验证集)的分类错误率,分类错误率越低,代表分类正确率越高。作为输出,设定隐含层节点为。原创 2025-07-09 06:33:15 · 908 阅读 · 0 评论 -
基于蛇优化算法优化的正则化极限学习机(RELM)的分类问题求解
由前文可知,RELM的初始权值和阈值都是随机产生。每次产生的初始权值和阈值具有满目性。本文利用蛇优化算法对初始权值和阈值, 以及正则项进行优化。极限学习机的结构是一种典型的单隐层前馈 神经网络( SLFN)。采用随机法产生训练集和测试集,其中训练集包含 500 个样本,测试集包含 69 个样本。采用随机法产生训练集和测试集,其中训练集包含 500 个样本,测试集包含 69 个样本。适应度函数为,训练集和测试集(验证集)的分类错误率,分类错误率越低,代表分类正确率越高。作为输出,设定隐含层节点为。原创 2025-07-09 06:33:03 · 771 阅读 · 0 评论 -
基于材料生成算法优化的正则化极限学习机(RELM)的分类问题求解
由前文可知,RELM的初始权值和阈值都是随机产生。每次产生的初始权值和阈值具有满目性。本文利用材料生成算法对初始权值和阈值, 以及正则项进行优化。极限学习机的结构是一种典型的单隐层前馈 神经网络( SLFN)。采用随机法产生训练集和测试集,其中训练集包含 500 个样本,测试集包含 69 个样本。采用随机法产生训练集和测试集,其中训练集包含 500 个样本,测试集包含 69 个样本。适应度函数为,训练集和测试集(验证集)的分类错误率,分类错误率越低,代表分类正确率越高。作为输出,设定隐含层节点为。原创 2025-07-09 06:32:55 · 564 阅读 · 0 评论 -
基于跳蛛算法优化的正则化极限学习机(RELM)的分类问题求解
由前文可知,RELM的初始权值和阈值都是随机产生。每次产生的初始权值和阈值具有满目性。本文利用跳蛛算法对初始权值和阈值, 以及正则项进行优化。极限学习机的结构是一种典型的单隐层前馈 神经网络( SLFN)。采用随机法产生训练集和测试集,其中训练集包含 500 个样本,测试集包含 69 个样本。采用随机法产生训练集和测试集,其中训练集包含 500 个样本,测试集包含 69 个样本。适应度函数为,训练集和测试集(验证集)的分类错误率,分类错误率越低,代表分类正确率越高。作为输出,设定隐含层节点为。原创 2025-07-09 06:32:47 · 788 阅读 · 0 评论 -
基于向量加权平均算法优化的正则化极限学习机(RELM)的分类问题求解
由前文可知,RELM的初始权值和阈值都是随机产生。每次产生的初始权值和阈值具有满目性。本文利用向量加权平均算法对初始权值和阈值, 以及正则项进行优化。极限学习机的结构是一种典型的单隐层前馈 神经网络( SLFN)。采用随机法产生训练集和测试集,其中训练集包含 500 个样本,测试集包含 69 个样本。采用随机法产生训练集和测试集,其中训练集包含 500 个样本,测试集包含 69 个样本。适应度函数为,训练集和测试集(验证集)的分类错误率,分类错误率越低,代表分类正确率越高。,随机选取输入层权 值。原创 2025-07-09 06:32:39 · 1017 阅读 · 0 评论 -
基于金枪鱼群算法优化的正则化极限学习机(RELM)的分类问题求解
由前文可知,RELM的初始权值和阈值都是随机产生。每次产生的初始权值和阈值具有满目性。本文利用金枪鱼群算法对初始权值和阈值, 以及正则项进行优化。极限学习机的结构是一种典型的单隐层前馈 神经网络( SLFN)。采用随机法产生训练集和测试集,其中训练集包含 500 个样本,测试集包含 69 个样本。采用随机法产生训练集和测试集,其中训练集包含 500 个样本,测试集包含 69 个样本。适应度函数为,训练集和测试集(验证集)的分类错误率,分类错误率越低,代表分类正确率越高。作为输出,设定隐含层节点为。原创 2025-07-09 06:32:31 · 919 阅读 · 0 评论 -
基于爬行动物算法优化的正则化极限学习机(RELM)的分类问题求解
由前文可知,RELM的初始权值和阈值都是随机产生。每次产生的初始权值和阈值具有满目性。本文利用爬行动物算法对初始权值和阈值, 以及正则项进行优化。极限学习机的结构是一种典型的单隐层前馈 神经网络( SLFN)。采用随机法产生训练集和测试集,其中训练集包含 500 个样本,测试集包含 69 个样本。采用随机法产生训练集和测试集,其中训练集包含 500 个样本,测试集包含 69 个样本。适应度函数为,训练集和测试集(验证集)的分类错误率,分类错误率越低,代表分类正确率越高。作为输出,设定隐含层节点为。原创 2025-07-09 06:32:07 · 897 阅读 · 0 评论 -
基于原子轨道搜索算法优化的正则化极限学习机(RELM)的分类问题求解
由前文可知,RELM的初始权值和阈值都是随机产生。每次产生的初始权值和阈值具有满目性。本文利用原子轨道搜索算法对初始权值和阈值, 以及正则项进行优化。极限学习机的结构是一种典型的单隐层前馈 神经网络( SLFN)。采用随机法产生训练集和测试集,其中训练集包含 500 个样本,测试集包含 69 个样本。采用随机法产生训练集和测试集,其中训练集包含 500 个样本,测试集包含 69 个样本。适应度函数为,训练集和测试集(验证集)的分类错误率,分类错误率越低,代表分类正确率越高。,随机选取输入层权 值。原创 2025-07-09 06:31:57 · 864 阅读 · 0 评论 -
基于天鹰算法优化的正则化极限学习机(RELM)的分类问题求解
由前文可知,RELM的初始权值和阈值都是随机产生。每次产生的初始权值和阈值具有满目性。本文利用天鹰算法对初始权值和阈值, 以及正则项进行优化。极限学习机的结构是一种典型的单隐层前馈 神经网络( SLFN)。采用随机法产生训练集和测试集,其中训练集包含 500 个样本,测试集包含 69 个样本。采用随机法产生训练集和测试集,其中训练集包含 500 个样本,测试集包含 69 个样本。适应度函数为,训练集和测试集(验证集)的分类错误率,分类错误率越低,代表分类正确率越高。作为输出,设定隐含层节点为。原创 2025-07-09 06:31:46 · 849 阅读 · 0 评论 -
基于猎食者算法优化的正则化极限学习机(RELM)的分类问题求解
由前文可知,RELM的初始权值和阈值都是随机产生。每次产生的初始权值和阈值具有满目性。本文利用猎食者算法对初始权值和阈值, 以及正则项进行优化。极限学习机的结构是一种典型的单隐层前馈 神经网络( SLFN)。采用随机法产生训练集和测试集,其中训练集包含 500 个样本,测试集包含 69 个样本。采用随机法产生训练集和测试集,其中训练集包含 500 个样本,测试集包含 69 个样本。适应度函数为,训练集和测试集(验证集)的分类错误率,分类错误率越低,代表分类正确率越高。作为输出,设定隐含层节点为。原创 2025-07-09 06:31:37 · 634 阅读 · 0 评论 -
基于鹰栖息算法优化的正则化极限学习机(RELM)的分类问题求解
由前文可知,RELM的初始权值和阈值都是随机产生。每次产生的初始权值和阈值具有满目性。本文利用鹰栖息算法对初始权值和阈值, 以及正则项进行优化。极限学习机的结构是一种典型的单隐层前馈 神经网络( SLFN)。采用随机法产生训练集和测试集,其中训练集包含 500 个样本,测试集包含 69 个样本。采用随机法产生训练集和测试集,其中训练集包含 500 个样本,测试集包含 69 个样本。适应度函数为,训练集和测试集(验证集)的分类错误率,分类错误率越低,代表分类正确率越高。作为输出,设定隐含层节点为。原创 2025-07-08 06:26:24 · 974 阅读 · 0 评论 -
基于卷尾猴算法优化的正则化极限学习机(RELM)的分类问题求解
由前文可知,RELM的初始权值和阈值都是随机产生。每次产生的初始权值和阈值具有满目性。本文利用卷尾猴算法对初始权值和阈值, 以及正则项进行优化。极限学习机的结构是一种典型的单隐层前馈 神经网络( SLFN)。采用随机法产生训练集和测试集,其中训练集包含 500 个样本,测试集包含 69 个样本。采用随机法产生训练集和测试集,其中训练集包含 500 个样本,测试集包含 69 个样本。适应度函数为,训练集和测试集(验证集)的分类错误率,分类错误率越低,代表分类正确率越高。作为输出,设定隐含层节点为。原创 2025-07-08 06:26:15 · 646 阅读 · 0 评论 -
基于人工大猩猩部队算法优化的正则化极限学习机(RELM)的分类问题求解
由前文可知,RELM的初始权值和阈值都是随机产生。每次产生的初始权值和阈值具有满目性。本文利用人工大猩猩部队算法对初始权值和阈值, 以及正则项进行优化。极限学习机的结构是一种典型的单隐层前馈 神经网络( SLFN)。采用随机法产生训练集和测试集,其中训练集包含 500 个样本,测试集包含 69 个样本。采用随机法产生训练集和测试集,其中训练集包含 500 个样本,测试集包含 69 个样本。适应度函数为,训练集和测试集(验证集)的分类错误率,分类错误率越低,代表分类正确率越高。,随机选取输入层权 值。原创 2025-07-08 06:26:07 · 1359 阅读 · 0 评论 -
基于晶体结构算法优化的正则化极限学习机(RELM)的分类问题求解
由前文可知,RELM的初始权值和阈值都是随机产生。每次产生的初始权值和阈值具有满目性。本文利用晶体结构算法对初始权值和阈值, 以及正则项进行优化。极限学习机的结构是一种典型的单隐层前馈 神经网络( SLFN)。采用随机法产生训练集和测试集,其中训练集包含 500 个样本,测试集包含 69 个样本。采用随机法产生训练集和测试集,其中训练集包含 500 个样本,测试集包含 69 个样本。适应度函数为,训练集和测试集(验证集)的分类错误率,分类错误率越低,代表分类正确率越高。作为输出,设定隐含层节点为。原创 2025-07-08 06:25:59 · 785 阅读 · 0 评论 -
基于变色龙算法优化的正则化极限学习机(RELM)的分类问题求解
由前文可知,RELM的初始权值和阈值都是随机产生。每次产生的初始权值和阈值具有满目性。本文利用变色龙算法对初始权值和阈值, 以及正则项进行优化。极限学习机的结构是一种典型的单隐层前馈 神经网络( SLFN)。采用随机法产生训练集和测试集,其中训练集包含 500 个样本,测试集包含 69 个样本。采用随机法产生训练集和测试集,其中训练集包含 500 个样本,测试集包含 69 个样本。适应度函数为,训练集和测试集(验证集)的分类错误率,分类错误率越低,代表分类正确率越高。作为输出,设定隐含层节点为。原创 2025-07-08 06:25:51 · 743 阅读 · 0 评论 -
基于野马算法优化的正则化极限学习机(RELM)的分类问题求解
由前文可知,RELM的初始权值和阈值都是随机产生。每次产生的初始权值和阈值具有满目性。本文利用野马算法对初始权值和阈值, 以及正则项进行优化。极限学习机的结构是一种典型的单隐层前馈 神经网络( SLFN)。采用随机法产生训练集和测试集,其中训练集包含 500 个样本,测试集包含 69 个样本。采用随机法产生训练集和测试集,其中训练集包含 500 个样本,测试集包含 69 个样本。适应度函数为,训练集和测试集(验证集)的分类错误率,分类错误率越低,代表分类正确率越高。作为输出,设定隐含层节点为。原创 2025-07-07 06:37:00 · 1246 阅读 · 0 评论 -
基于白冠鸡算法优化的正则化极限学习机(RELM)的分类问题求解
由前文可知,RELM的初始权值和阈值都是随机产生。每次产生的初始权值和阈值具有满目性。本文利用白冠鸡算法对初始权值和阈值, 以及正则项进行优化。极限学习机的结构是一种典型的单隐层前馈 神经网络( SLFN)。采用随机法产生训练集和测试集,其中训练集包含 500 个样本,测试集包含 69 个样本。采用随机法产生训练集和测试集,其中训练集包含 500 个样本,测试集包含 69 个样本。适应度函数为,训练集和测试集(验证集)的分类错误率,分类错误率越低,代表分类正确率越高。作为输出,设定隐含层节点为。原创 2025-07-07 06:36:53 · 938 阅读 · 0 评论