- 博客(2)
- 资源 (1)
- 收藏
- 关注
原创 SVM及SMO
其中,$y_i$是第$i$个数据点的标签,$\textbf{x_i}$是第$i$个数据点的特征向量,$\textbf{w}$是SVM模型的权重向量,$b$是模型的偏置,$C$是一个超参数,用于控制分类器的误差和间隔大小之间的权衡。KKT条件是SVM求解过程中需要满足的条件,它们表明了SVM模型的一些性质,比如支持向量必须在边界上,同时不同类型的支持向量所对应的拉格朗日乘子具有不同的取值范围。可以发现,两个矩阵的乘积就是原始的矩阵A,因此分解是正确的。是等式和不等式约束,式子的意思是等式的左边。
2023-04-28 11:18:17
315
1
原创 yolov5x损失函数反向传播--chatgpt3.5指导
假设我们需要对损失函数 L 进行反向传播,其中包含了坐标损失函数、softmax 函数、LeakyReLU 激活函数、Batch Normalization 以及卷积层,在反向传播过程中,我们需要计算这些函数对其输入的导数,从而进行梯度的更新。这样,我们就得到了坐标损失函数、softmax 函数、LeakyReLU 激活函数、Batch Normalization 和卷积层的反向传播公式,可以在实际应用中使用这些公式对神经网络的梯度进行计算和更新。设损失函数 l 对 LeakyReLU 激活函数的输入。
2023-04-18 09:09:31
922
2
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人